Representations of Lie Algebras, Quantum Groups and Related Topics

Representations of Lie Algebras, Quantum Groups and Related Topics
Author: Naihuan Jing
Publisher: American Mathematical Soc.
Total Pages: 242
Release: 2018-08-21
Genre: Mathematics
ISBN: 1470436965

This volume contains the proceedings of the AMS Special Session on Representations of Lie Algebras, Quantum Groups and Related Topics, held from November 12–13, 2016, at North Carolina State University, Raleigh, North Carolina. The articles cover various aspects of representations of Kac–Moody Lie algebras and their applications, structure of Leibniz algebras and Krichever–Novikov algebras, representations of quantum groups, and related topics.

Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations
Author: Peter Woit
Publisher: Springer
Total Pages: 659
Release: 2017-11-01
Genre: Science
ISBN: 3319646125

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups
Author: Toshiaki Shoji
Publisher: American Mathematical Society(RI)
Total Pages: 514
Release: 2004
Genre: Computers
ISBN:

A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.

Quantum Group Symmetry And Q-tensor Algebras

Quantum Group Symmetry And Q-tensor Algebras
Author: Lawrence C Biedenharn
Publisher: World Scientific
Total Pages: 305
Release: 1995-08-31
Genre: Science
ISBN: 9814500135

Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics.

Affine Lie Algebras and Quantum Groups

Affine Lie Algebras and Quantum Groups
Author: Jürgen Fuchs
Publisher: Cambridge University Press
Total Pages: 452
Release: 1995-03-09
Genre: Mathematics
ISBN: 9780521484121

This is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.

Quantum Groups

Quantum Groups
Author: Ross Street
Publisher: Cambridge University Press
Total Pages: 160
Release: 2007-01-18
Genre: Mathematics
ISBN: 1139461443

Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.

Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups
Author: Ken Brown
Publisher: Birkhäuser
Total Pages: 339
Release: 2012-12-06
Genre: Mathematics
ISBN: 303488205X

This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.

Lie Algebras, Vertex Operator Algebras, and Related Topics

Lie Algebras, Vertex Operator Algebras, and Related Topics
Author: Katrina Barron
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2017-08-15
Genre: Mathematics
ISBN: 1470426668

This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.

Tensor Categories

Tensor Categories
Author: Pavel Etingof
Publisher: American Mathematical Soc.
Total Pages: 362
Release: 2016-08-05
Genre: Mathematics
ISBN: 1470434415

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations
Author: Brian C. Hall
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2003-08-07
Genre: Mathematics
ISBN: 9780387401225

This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.