Relativity And Scientific Computing
Download Relativity And Scientific Computing full books in PDF, epub, and Kindle. Read online free Relativity And Scientific Computing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Friedrich W Hehl |
Publisher | : Springer Science & Business Media |
Total Pages | : 405 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642957323 |
For this set of lectures we assumed that the reader has a reasonable back ground in physics and some knowledge of general relativity, the modern theory of gravity in macrophysics, and cosmology. Computer methods are present ed by leading experts in the three main domains: in numerics, in computer algebra, and in visualization. The idea was that each of these subdisciplines is introduced by an extended set of main lectures and that each is conceived as being of comparable 'importance. Therefpre we believe that the book represents a good introduction into scientific I computing for any student who wants to specialize in relativity, gravitation, and/or astrophysics. We took great care to select lecturers who teach in a comprehensible way and who are, at the same time, at the research front of their respective field. In numerics we had the privilege of having a lecturer from the National Center for Supercomputing Applications (NCSA, Champaign, IL, USA) and some from other leading institutions of the world; visualization was taught by a visualization expert from Boeing; and in com puter algebra we took recourse to practitioners of different computer algebra systems as applied to classical general relativity up to quantum gravity and differential geometry.
Author | : Thomas W. Baumgarte |
Publisher | : Cambridge University Press |
Total Pages | : 717 |
Release | : 2010-06-24 |
Genre | : Science |
ISBN | : 1139643177 |
Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.
Author | : Friedrich W Hehl |
Publisher | : Springer |
Total Pages | : 389 |
Release | : 2012-02-12 |
Genre | : Science |
ISBN | : 9783642957345 |
For this set of lectures we assumed that the reader has a reasonable back ground in physics and some knowledge of general relativity, the modern theory of gravity in macrophysics, and cosmology. Computer methods are present ed by leading experts in the three main domains: in numerics, in computer algebra, and in visualization. The idea was that each of these subdisciplines is introduced by an extended set of main lectures and that each is conceived as being of comparable 'importance. Therefpre we believe that the book represents a good introduction into scientific I computing for any student who wants to specialize in relativity, gravitation, and/or astrophysics. We took great care to select lecturers who teach in a comprehensible way and who are, at the same time, at the research front of their respective field. In numerics we had the privilege of having a lecturer from the National Center for Supercomputing Applications (NCSA, Champaign, IL, USA) and some from other leading institutions of the world; visualization was taught by a visualization expert from Boeing; and in com puter algebra we took recourse to practitioners of different computer algebra systems as applied to classical general relativity up to quantum gravity and differential geometry.
Author | : John B. Kogut |
Publisher | : Academic Press |
Total Pages | : 195 |
Release | : 2012-12-02 |
Genre | : Science |
ISBN | : 0080924085 |
Introduction to Relativity is intended to teach physics and astronomy majors at the freshman, sophomore or upper-division levels how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity", everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Simplicity: the book teaches space and time in relativity in a physical fashion with minimal mathematics - Conciseness: the book teaches relativity by emphasizing the basic simplicity of the principles at work - Visualization: space-time diagrams (Minkowski) illustrate phenomena from simultaneity to the resolution of the twin paradox in a concrete fashion - Worked problems: two chapters of challenging problems solved in several ways illustrate and teach the principles - Problem sets: each chapter is accompanied by a full set of problems for the student that teach the principles and some new phenonmena
Author | : Thomas W. Baumgarte |
Publisher | : Cambridge University Press |
Total Pages | : 235 |
Release | : 2021-04-08 |
Genre | : Mathematics |
ISBN | : 1108844111 |
A pedagogical and accessible introduction to numerical relativity, the key tool to model gravitational waves and black hole mergers.
Author | : Michael T. Heath |
Publisher | : SIAM |
Total Pages | : 587 |
Release | : 2018-11-14 |
Genre | : Science |
ISBN | : 1611975573 |
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
Author | : Alan P. Lightman |
Publisher | : Princeton University Press |
Total Pages | : 616 |
Release | : 2017-09-01 |
Genre | : Science |
ISBN | : 1400889014 |
An essential resource for learning about general relativity and much more, from four leading experts Important and useful to every student of relativity, this book is a unique collection of some 475 problems--with solutions--in the fields of special and general relativity, gravitation, relativistic astrophysics, and cosmology. The problems are expressed in broad physical terms to enhance their pertinence to readers with diverse backgrounds. In their solutions, the authors have attempted to convey a mode of approach to these kinds of problems, revealing procedures that can reduce the labor of calculations while avoiding the pitfall of too much or too powerful formalism. Although well suited for individual use, the volume may also be used with one of the modem textbooks in general relativity.
Author | : Valeri V. Dvoeglazov |
Publisher | : Nova Science Publishers |
Total Pages | : 0 |
Release | : 2015-12 |
Genre | : Quantum cosmology |
ISBN | : 9781634837897 |
Considering mathematical questions of relativity theory, relations to modern astrophysics, as well as some conceptual foundations, this book includes papers by R. Cahill, J.G. Hartnett, F. Cardone, A. Marrani and R. Mignani, J. Dunning-Davies, A. Gutierrez-Rodriguez, A. Vankov, P. O'Donell & others.
Author | : Zhang, Wen-Ran |
Publisher | : IGI Global |
Total Pages | : 436 |
Release | : 2011-03-31 |
Genre | : Computers |
ISBN | : 1609605268 |
YinYang bipolar relativity can trace its philosophical origins to ancient Chinese YinYang cosmology, which claims that everything has two sides or two opposite, but reciprocal, poles or energies. More specifically, this discipline is intended to be a logical unification of general relativity and quantum mechanics. YinYang Bipolar Relativity: A Unifying Theory of Nature, Agents and Causality with Applications in Quantum Computing, Cognitive Informatics and Life Sciences presents real-world applications of YinYang bipolar relativity that focus on quantum computing and agent interaction. This unique work makes complex theoretical topics, such as the ubiquitous effects of quantum entanglement, logically comprehendible to a vast audience.
Author | : Michael Tsamparlis |
Publisher | : Springer Science & Business Media |
Total Pages | : 605 |
Release | : 2010-05-17 |
Genre | : Science |
ISBN | : 3642038379 |
Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using “heavier” mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a ́ la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones! As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity.