Regime Switching Garch Models
Download Regime Switching Garch Models full books in PDF, epub, and Kindle. Read online free Regime Switching Garch Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : James D. Hamilton |
Publisher | : Springer Science & Business Media |
Total Pages | : 267 |
Release | : 2013-06-29 |
Genre | : Business & Economics |
ISBN | : 3642511821 |
This book is a collection of state-of-the-art papers on the properties of business cycles and financial analysis. The individual contributions cover new advances in Markov-switching models with applications to business cycle research and finance. The introduction surveys the existing methods and new results of the last decade. Individual chapters study features of the U. S. and European business cycles with particular focus on the role of monetary policy, oil shocks and co movements among key variables. The short-run versus long-run consequences of an economic recession are also discussed. Another area that is featured is an extensive analysis of currency crises and the possibility of bubbles or fads in stock prices. A concluding chapter offers useful new results on testing for this kind of regime-switching behaviour. Overall, the book provides a state-of-the-art over view of new directions in methods and results for estimation and inference based on the use of Markov-switching time-series analysis. A special feature of the book is that it includes an illustration of a wide range of applications based on a common methodology. It is expected that the theme of the book will be of particular interest to the macroeconomics readers as well as econometrics professionals, scholars and graduate students. We wish to express our gratitude to the authors for their strong contributions and the reviewers for their assistance and careful attention to detail in their reports.
Author | : David Ardia |
Publisher | : Springer Science & Business Media |
Total Pages | : 206 |
Release | : 2008-05-08 |
Genre | : Business & Economics |
ISBN | : 3540786570 |
This book presents in detail methodologies for the Bayesian estimation of sing- regime and regime-switching GARCH models. These models are widespread and essential tools in n ancial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique. As this study aims to demonstrate, the Bayesian approach o ers an attractive alternative which enables small sample results, robust estimation, model discrimination and probabilistic statements on nonlinear functions of the model parameters. The author is indebted to numerous individuals for help in the preparation of this study. Primarily, I owe a great debt to Prof. Dr. Philippe J. Deschamps who inspired me to study Bayesian econometrics, suggested the subject, guided me under his supervision and encouraged my research. I would also like to thank Prof. Dr. Martin Wallmeier and my colleagues of the Department of Quantitative Economics, in particular Michael Beer, Roberto Cerratti and Gilles Kaltenrieder, for their useful comments and discussions. I am very indebted to my friends Carlos Ord as Criado, Julien A. Straubhaar, J er ^ ome Ph. A. Taillard and Mathieu Vuilleumier, for their support in the elds of economics, mathematics and statistics. Thanks also to my friend Kevin Barnes who helped with my English in this work. Finally, I am greatly indebted to my parents and grandparents for their support and encouragement while I was struggling with the writing of this thesis.
Author | : Steven Durlauf |
Publisher | : Springer |
Total Pages | : 417 |
Release | : 2016-04-30 |
Genre | : Business & Economics |
ISBN | : 0230280838 |
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
Author | : Luc Bauwens |
Publisher | : John Wiley & Sons |
Total Pages | : 566 |
Release | : 2012-03-22 |
Genre | : Business & Economics |
ISBN | : 1118272056 |
A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.
Author | : Vladik Kreinovich |
Publisher | : Springer |
Total Pages | : 1167 |
Release | : 2018-11-24 |
Genre | : Technology & Engineering |
ISBN | : 3030042006 |
This book presents recent research on probabilistic methods in economics, from machine learning to statistical analysis. Economics is a very important – and at the same a very difficult discipline. It is not easy to predict how an economy will evolve or to identify the measures needed to make an economy prosper. One of the main reasons for this is the high level of uncertainty: different difficult-to-predict events can influence the future economic behavior. To make good predictions and reasonable recommendations, this uncertainty has to be taken into account. In the past, most related research results were based on using traditional techniques from probability and statistics, such as p-value-based hypothesis testing. These techniques led to numerous successful applications, but in the last decades, several examples have emerged showing that these techniques often lead to unreliable and inaccurate predictions. It is therefore necessary to come up with new techniques for processing the corresponding uncertainty that go beyond the traditional probabilistic techniques. This book focuses on such techniques, their economic applications and the remaining challenges, presenting both related theoretical developments and their practical applications.
Author | : Chang-Jin Kim |
Publisher | : Mit Press |
Total Pages | : 297 |
Release | : 1999 |
Genre | : Business & Economics |
ISBN | : 9780262112383 |
Both state-space models and Markov switching models have been highly productive paths for empirical research in macroeconomics and finance. This book presents recent advances in econometric methods that make feasible the estimation of models that have both features. One approach, in the classical framework, approximates the likelihood function; the other, in the Bayesian framework, uses Gibbs-sampling to simulate posterior distributions from data.The authors present numerous applications of these approaches in detail: decomposition of time series into trend and cycle, a new index of coincident economic indicators, approaches to modeling monetary policy uncertainty, Friedman's "plucking" model of recessions, the detection of turning points in the business cycle and the question of whether booms and recessions are duration-dependent, state-space models with heteroskedastic disturbances, fads and crashes in financial markets, long-run real exchange rates, and mean reversion in asset returns.
Author | : Kevin D. Hoover |
Publisher | : Springer Science & Business Media |
Total Pages | : 575 |
Release | : 2012-12-06 |
Genre | : Business & Economics |
ISBN | : 940110669X |
Each chapter of Macroeconometrics is written by respected econometricians in order to provide useful information and perspectives for those who wish to apply econometrics in macroeconomics. The chapters are all written with clear methodological perspectives, making the virtues and limitations of particular econometric approaches accessible to a general readership familiar with applied macroeconomics. The real tensions in macroeconometrics are revealed by the critical comments from different econometricians, having an alternative perspective, which follow each chapter.
Author | : Eric Zivot |
Publisher | : Springer Science & Business Media |
Total Pages | : 632 |
Release | : 2013-11-11 |
Genre | : Business & Economics |
ISBN | : 0387217630 |
The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Author | : Laurent E. Calvet |
Publisher | : Academic Press |
Total Pages | : 273 |
Release | : 2008-10-13 |
Genre | : Business & Economics |
ISBN | : 0080559964 |
Calvet and Fisher present a powerful, new technique for volatility forecasting that draws on insights from the use of multifractals in the natural sciences and mathematics and provides a unified treatment of the use of multifractal techniques in finance. A large existing literature (e.g., Engle, 1982; Rossi, 1995) models volatility as an average of past shocks, possibly with a noise component. This approach often has difficulty capturing sharp discontinuities and large changes in financial volatility. Their research has shown the advantages of modelling volatility as subject to abrupt regime changes of heterogeneous durations. Using the intuition that some economic phenomena are long-lasting while others are more transient, they permit regimes to have varying degrees of persistence. By drawing on insights from the use of multifractals in the natural sciences and mathematics, they show how to construct high-dimensional regime-switching models that are easy to estimate, and substantially outperform some of the best traditional forecasting models such as GARCH. The goal of Multifractal Volatility is to popularize the approach by presenting these exciting new developments to a wider audience. They emphasize both theoretical and empirical applications, beginning with a style that is easily accessible and intuitive in early chapters, and extending to the most rigorous continuous-time and equilibrium pricing formulations in final chapters. - Presents a powerful new technique for forecasting volatility - Leads the reader intuitively from existing volatility techniques to the frontier of research in this field by top scholars at major universities - The first comprehensive book on multifractal techniques in finance, a cutting-edge field of research
Author | : Howell Tong |
Publisher | : Oxford University Press, USA |
Total Pages | : 592 |
Release | : 1990 |
Genre | : Mathematics |
ISBN | : |
Written by an internationally recognized expert in the field, this book provides a valuable introduction to the rapidly growing area of non-linear time series. Because developments in the study of dynamical systems have motivated many of the advances discussed here, the author's coverage includes such fundamental concepts of dynamical systems theory as limit cycles, Lyapunov functions, thresholds, and stability, with detailed descriptions of their role in the analysis of non-linear time series data. As the first accessible and comprehensive account of these exciting new developments, this unique volume bridges the gap between linear and chaotic time series analysis. Both statisticians and dynamical systems theorists will value its survey of recent developments and the present state of research, as well as the discussion of a number of unsolved problems in the field.