Reference Data on Atomic Physics and Atomic Processes

Reference Data on Atomic Physics and Atomic Processes
Author: Boris M. Smirnov
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2008-09-03
Genre: Science
ISBN: 3540793631

Each scientist works with certain information and collects it in the course of prof- sional activity. In the same manner, the author collected data for atomic physics and atomic processes. This information was checked in the course of the author’s p- fessional activity and was published in the form of appendices to the corresponding books on atomic and plasma physics. Now it has been decided to publish these data separately. This book contains atomic data and useful information about atomic particles and atomic systems including molecules, nanoclusters, metals and condensed s- tems of elements. It also gives information about atomic processes and transport processes in gases and plasmas. In addition, the book deals with general concepts and simple models for these objects and processes. We give units and conversion factors for them as well as conversion factors for spread formulas of general physics and the physics of atoms, clusters and ionized gases since such formulas are used in professional practice by each scientist of this area.

Atomic Particles and Atom Systems

Atomic Particles and Atom Systems
Author: Boris M. Smirnov
Publisher: Springer
Total Pages: 219
Release: 2018-07-10
Genre: Science
ISBN: 331975405X

This book presents physical units and widely used physical formulas, which are given together with conversion factors in various units. It includes frequently used atomic spectra and data for atoms, ions and molecules, as well as potential curves for diatomic molecules, and provides numerical parameters for transport phenomena in gases and plasmas. Further, the rate constants of a number of processes in atmospheric ionized air have been added to this second edition of the book. The numerical data has been selected from the information on atoms, atomic systems, atomic processes and models for atomic physics in this area, and the numerical parameters of atoms, ions and atom systems are included in periodical tables of elements.

Reference Data on Atoms, Molecules, and Ions

Reference Data on Atoms, Molecules, and Ions
Author: A.A. Radzig
Publisher: Springer Science & Business Media
Total Pages: 475
Release: 2012-12-06
Genre: Science
ISBN: 3642820484

This reference book contains information about the structure and properties of atomic and molecular particles, as well as some of the nuclear parameters. It includes data which can be of use when studying atomic and molecular processes in the physics of gases, chemistry of gases and gas optics, in plasma physics and plasma chemistry, in physical chemistry and radiation chemistry, in geophysics, astrophysics, solid-state physics and a variety of cross-discipli nary fields of science and technology. Our aim was to collect carefully selected and estimated numerical values for a wide circle of microscopic parameters in a relatively "not thick" book. These values are of constant use in the work of practical investigators. In essence, the book represents a substantially revised and extended edi tion of our reference book published in Russian in 1980. Two main reasons made it necessary to rework the material. On the one hand, a great deal of new high-quality data has appeared in the past few years and furthermore we have enlisted many sources of information previously inaccessible to us. On the other hand, we have tried to insert extensive information on new, rapidly progressing branches of physical research, such as multiply charged ions, Rydberg atoms, van der Waals and excimer molecules, complex ions, etc. All this brings us to the very edge of studies being carried out in the field.

Atomic Processes in Basic and Applied Physics

Atomic Processes in Basic and Applied Physics
Author: Viacheslav Shevelko
Publisher: Springer Science & Business Media
Total Pages: 501
Release: 2012-05-31
Genre: Science
ISBN: 3642255698

The book is a comprehensive edition which considers the interactions of atoms, ions and molecules with charged particles, photons and laser fields and reflects the present understanding of atomic processes such as electron capture, target and projectile ionisation, photoabsorption and others occurring in most of laboratory and astrophysical plasma sources including many-photon and many-electron processes. The material consists of selected papers written by leading scientists in various fields.

Handbook of Theoretical Atomic Physics

Handbook of Theoretical Atomic Physics
Author: Miron Amusia
Publisher: Springer Science & Business Media
Total Pages: 806
Release: 2012-07-23
Genre: Science
ISBN: 3642247520

The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

Atomic Spectra and Atomic Structure

Atomic Spectra and Atomic Structure
Author: Gerhard Herzberg
Publisher: Courier Corporation
Total Pages: 292
Release: 1944-01-01
Genre: Science
ISBN: 9780486601151

For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.

Physics of Atoms and Ions

Physics of Atoms and Ions
Author: Boris M. Smirnov
Publisher: Springer Science & Business Media
Total Pages: 451
Release: 2006-05-17
Genre: Science
ISBN: 0387217304

Intended for advanced students of physics, chemistry and related disciplines, this text treats the quantum theory of atoms and ions within the framework of self-consistent fields. Data needed for the analysis of collisions and other atomic processes are also included.

High-Energy Atomic Physics

High-Energy Atomic Physics
Author: Evgeny G. Drukarev
Publisher: Springer
Total Pages: 384
Release: 2018-04-22
Genre: Science
ISBN: 9783319813578

This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied by creation of e-e+ pairs, and the photoionization of endohedral atoms (e.g. fullerene). Last but not least, the computationally challenging transitions in the electron shell during certain types of nuclear decays are investigated in detail.