Reduced Activation Materials for Fusion Reactors
Author | : R. L. Klueh |
Publisher | : ASTM International |
Total Pages | : 255 |
Release | : 1990 |
Genre | : Technology & Engineering |
ISBN | : 080311267X |
Download Reduced Activation Materials For Fusion Reactors full books in PDF, epub, and Kindle. Read online free Reduced Activation Materials For Fusion Reactors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : R. L. Klueh |
Publisher | : ASTM International |
Total Pages | : 255 |
Release | : 1990 |
Genre | : Technology & Engineering |
ISBN | : 080311267X |
Author | : Vasilij A. Glukhikh |
Publisher | : Woodhead Publishing |
Total Pages | : 476 |
Release | : 2018-05-21 |
Genre | : Technology & Engineering |
ISBN | : 0081024711 |
Fundamentals of Magnetic Thermonuclear Reactor Design is a comprehensive resource on fusion technology and energy systems written by renowned scientists and engineers from the Russian nuclear industry. It brings together a wealth of invaluable experience and knowledge on controlled thermonuclear fusion (CTF) facilities with magnetic plasma confinement – from the first semi-commercial tokamak T-3, to the multi-billion international experimental thermonuclear reactor ITER, now in construction in France. As the INTOR and ITER projects have made an immense contribution in the past few decades, this book focuses on its practical engineering aspects and the basics of technical physics and electrical engineering. Users will gain an understanding of the key ratios between plasma and technical parameters, design streamlining algorithms and engineering solutions. - Written by a team of qualified experts who have been involved in the design of thermonuclear reactors for over 50 years - Outlines the most important features of the ITER project in France which is building the largest tokamak, including the design, material selection, safety and economic considerations - Includes data on how to design magnetic fusion reactors using CAD tools, along with relevant regulatory documents
Author | : Rajeev Shorey |
Publisher | : Springer |
Total Pages | : 76 |
Release | : 2016-11-25 |
Genre | : Technology & Engineering |
ISBN | : 9811031118 |
The book contains the proceedings of CAETS 2015 Convocation on ‘Pathways to Sustainability: Energy, Mobility and Healthcare Engineering’ that was held on October 13-14, 2015 in New Delhi. This 3 volume proceedings provide an international forum for discussion and communication of engineering and technological issues of common concern. This volume talks about ‘Healthcare’ and includes 11 chapters on diverse topics like regenerative engineering, big data analytics in healthcare, molecular science, rising expenditure on health issues, adoption of personalized medicine, etc. The contents of this volume will be useful to researchers and healthcare professionals.
Author | : Thomas J. Dolan |
Publisher | : Springer Science & Business Media |
Total Pages | : 816 |
Release | : 2014-02-10 |
Genre | : Technology & Engineering |
ISBN | : 1447155564 |
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.
Author | : R. L. Klueh |
Publisher | : ASTM International |
Total Pages | : 221 |
Release | : 2001-01-01 |
Genre | : Technology & Engineering |
ISBN | : 9780803120907 |
This monograph reviews the development of high-chromium ferritic/martensitic steels for exposure to the high-energy neutron environment of a fission or fusion reactor, and considers their potential use as a component material. The basic properties of the steels under non-nuclear conditions are provi
Author | : GARY S. WAS |
Publisher | : Springer |
Total Pages | : 1014 |
Release | : 2016-07-08 |
Genre | : Technology & Engineering |
ISBN | : 1493934384 |
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Author | : Pascal Yvon |
Publisher | : Woodhead Publishing |
Total Pages | : 686 |
Release | : 2016-08-27 |
Genre | : Technology & Engineering |
ISBN | : 0081009127 |
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
Author | : Todd R Allen |
Publisher | : Elsevier |
Total Pages | : 3552 |
Release | : 2011-05-12 |
Genre | : Technology & Engineering |
ISBN | : 0080560334 |
Comprehensive Nuclear Materials, Five Volume Set discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants
Author | : Igor Girka |
Publisher | : BoD – Books on Demand |
Total Pages | : 116 |
Release | : 2019-04-17 |
Genre | : Science |
ISBN | : 1789857872 |
Power production and its consumption and distribution are among the most urgent problems of mankind. Despite positive dynamics in introducing renewable sources of energy, nuclear power plants still remain the major source of carbon-free electric energy. Fusion can be an alternative to fission in the foreseeable future. Research in the field of controlled nuclear fusion has been ongoing for almost 100 years. Magnetic confinement systems are the most promising for effective implementation, and the International Thermonuclear Experimental Reactor is under construction in France. To accomplish nuclear fusion on Earth, we have to resolve a number of scientific and technological problems. This monograph includes selected chapters on nuclear physics and mechanical engineering within the scope of nuclear fusion.