Recurrence and Topology

Recurrence and Topology
Author: John M. Alongi
Publisher: American Mathematical Soc.
Total Pages: 233
Release: 2007
Genre: Mathematics
ISBN: 082184234X

Since at least the time of Poisson, mathematicians have pondered the notion of recurrence for differential equations. Solutions that exhibit recurrent behavior provide insight into the behavior of general solutions. In Recurrence and Topology, Alongi and Nelson provide a modern understanding of the subject, using the language and tools of dynamical systems and topology. Recurrence and Topology develops increasingly more general topological modes of recurrence for dynamical systems beginning with fixed points and concluding with chain recurrent points.

Recurrence in Topological Dynamics

Recurrence in Topological Dynamics
Author: Ethan Akin
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 1997-07-31
Genre: Mathematics
ISBN: 9780306455506

This groundbreaking volume is the first to elaborate the theory of set families as a tool for studying the phenomenon of recurrence. The theory is implicit in such seminal works as Hillel Furstenberg's Recurrence in Ergodic Theory and Combinational Number Theory, but Ethan Akin's study elaborates it in detail, defining such elements of theory as: open families of special subsets the unification of several ideas associated with transitivity, ergodicity, and mixing the Ellis theory of enveloping semigroups for compact dynamical systems and new notions of equicontinuity, distality, and rigidity.

Recurrence in Topological Dynamics

Recurrence in Topological Dynamics
Author: Ethan Akin
Publisher: Springer Science & Business Media
Total Pages: 271
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475726686

In the long run of a dynamical system, after transient phenomena have passed away, what remains is recurrence. An orbit is recurrent when it returns repeatedly to each neighborhood of its initial position. We can sharpen the concept by insisting that the returns occur with at least some prescribed frequency. For example, an orbit lies in some minimal subset if and only if it returns almost periodically to each neighborhood of the initial point. That is, each return time set is a so-called syndetic subset ofT= the positive reals (continuous time system) or T = the positive integers (discrete time system). This is a prototype for many of the results in this book. In particular, frequency is measured by membership in a family of subsets of the space modeling time, in this case the family of syndetic subsets of T. In applying dynamics to combinatorial number theory, Furstenberg introduced a large number of such families. Our first task is to describe explicitly the calculus of families implicit in Furstenberg's original work and in the results which have proliferated since. There are general constructions on families, e. g. , the dual of a family and the product of families. Other natural constructions arise from a topology or group action on the underlying set. The foundations are laid, in perhaps tedious detail, in Chapter 2. The family machinery is then applied in Chapters 3 and 4 to describe family versions of recurrence, topological transitivity, distality and rigidity.

Recurrence in Ergodic Theory and Combinatorial Number Theory

Recurrence in Ergodic Theory and Combinatorial Number Theory
Author: Harry Furstenberg
Publisher: Princeton University Press
Total Pages: 216
Release: 2014-07-14
Genre: Mathematics
ISBN: 1400855160

Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Topological Dynamical Systems

Topological Dynamical Systems
Author: Jan Vries
Publisher: Walter de Gruyter
Total Pages: 516
Release: 2014-01-31
Genre: Mathematics
ISBN: 3110342405

There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.

The General Topology of Dynamical Systems

The General Topology of Dynamical Systems
Author: Ethan Akin
Publisher: American Mathematical Soc.
Total Pages: 273
Release: 1993
Genre: Mathematics
ISBN: 0821849328

Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory.

Topological Dynamics

Topological Dynamics
Author: Walter Helbig Gottschalk
Publisher: American Mathematical Soc.
Total Pages: 184
Release: 1955-01-01
Genre: Mathematics
ISBN: 9780821874691

Topological dynamics is the study of transformation groups with respect to those topological properties whose prototype occurred in classical dynamics. In this volume, Part One contains the general theory. Part Two contains notable examples of flows which have contributed to the general theory of topological dynamics and which have in turn have been illuminated by the general theory of topological dynamics.

Handbook of Dynamical Systems

Handbook of Dynamical Systems
Author: A. Katok
Publisher: Elsevier
Total Pages: 1235
Release: 2005-12-17
Genre: Mathematics
ISBN: 0080478220

This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.

Recurrence Quantification Analysis

Recurrence Quantification Analysis
Author: Charles L. Webber, Jr.
Publisher: Springer
Total Pages: 426
Release: 2014-07-31
Genre: Science
ISBN: 3319071556

The analysis of recurrences in dynamical systems by using recurrence plots and their quantification is still an emerging field. Over the past decades recurrence plots have proven to be valuable data visualization and analysis tools in the theoretical study of complex, time-varying dynamical systems as well as in various applications in biology, neuroscience, kinesiology, psychology, physiology, engineering, physics, geosciences, linguistics, finance, economics, and other disciplines. This multi-authored book intends to comprehensively introduce and showcase recent advances as well as established best practices concerning both theoretical and practical aspects of recurrence plot based analysis. Edited and authored by leading researcher in the field, the various chapters address an interdisciplinary readership, ranging from theoretical physicists to application-oriented scientists in all data-providing disciplines.

Elements of Topological Dynamics

Elements of Topological Dynamics
Author: J. de Vries
Publisher: Springer Science & Business Media
Total Pages: 762
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401581711

This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.