Recommender Systems for Location-based Social Networks

Recommender Systems for Location-based Social Networks
Author: Panagiotis Symeonidis
Publisher: Springer Science & Business Media
Total Pages: 109
Release: 2014-02-08
Genre: Computers
ISBN: 1493902865

Online social networks collect information from users' social contacts and their daily interactions (co-tagging of photos, co-rating of products etc.) to provide them with recommendations of new products or friends. Lately, technological progressions in mobile devices (i.e. smart phones) enabled the incorporation of geo-location data in the traditional web-based online social networks, bringing the new era of Social and Mobile Web. The goal of this book is to bring together important research in a new family of recommender systems aimed at serving Location-based Social Networks (LBSNs). The chapters introduce a wide variety of recent approaches, from the most basic to the state-of-the-art, for providing recommendations in LBSNs. The book is organized into three parts. Part 1 provides introductory material on recommender systems, online social networks and LBSNs. Part 2 presents a wide variety of recommendation algorithms, ranging from basic to cutting edge, as well as a comparison of the characteristics of these recommender systems. Part 3 provides a step-by-step case study on the technical aspects of deploying and evaluating a real-world LBSN, which provides location, activity and friend recommendations. The material covered in the book is intended for graduate students, teachers, researchers, and practitioners in the areas of web data mining, information retrieval, and machine learning.

Social Network-Based Recommender Systems

Social Network-Based Recommender Systems
Author: Daniel Schall
Publisher: Springer
Total Pages: 139
Release: 2015-09-23
Genre: Computers
ISBN: 3319227351

This book introduces novel techniques and algorithms necessary to support the formation of social networks. Concepts such as link prediction, graph patterns, recommendation systems based on user reputation, strategic partner selection, collaborative systems and network formation based on ‘social brokers’ are presented. Chapters cover a wide range of models and algorithms, including graph models and a personalized PageRank model. Extensive experiments and scenarios using real world datasets from GitHub, Facebook, Twitter, Google Plus and the European Union ICT research collaborations serve to enhance reader understanding of the material with clear applications. Each chapter concludes with an analysis and detailed summary. Social Network-Based Recommender Systems is designed as a reference for professionals and researchers working in social network analysis and companies working on recommender systems. Advanced-level students studying computer science, statistics or mathematics will also find this books useful as a secondary text.

Encyclopedia of GIS

Encyclopedia of GIS
Author: Shashi Shekhar
Publisher: Springer Science & Business Media
Total Pages: 1392
Release: 2007-12-12
Genre: Computers
ISBN: 038730858X

The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.

Recommender System with Machine Learning and Artificial Intelligence

Recommender System with Machine Learning and Artificial Intelligence
Author: Sachi Nandan Mohanty
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2020-07-08
Genre: Computers
ISBN: 1119711576

This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.

Point-of-Interest Recommendation in Location-Based Social Networks

Point-of-Interest Recommendation in Location-Based Social Networks
Author: Shenglin Zhao
Publisher: Springer
Total Pages: 110
Release: 2018-07-13
Genre: Computers
ISBN: 9811313490

This book systematically introduces Point-of-interest (POI) recommendations in Location-based Social Networks (LBSNs). Starting with a review of the advances in this area, the book then analyzes user mobility in LBSNs from geographical and temporal perspectives. Further, it demonstrates how to build a state-of-the-art POI recommendation system by incorporating the user behavior analysis. Lastly, the book discusses future research directions in this area. This book is intended for professionals involved in POI recommendation and graduate students working on problems related to location-based services. It is assumed that readers have a basic knowledge of mathematics, as well as some background in recommendation systems.

Data Mining for Social Network Data

Data Mining for Social Network Data
Author: Nasrullah Memon
Publisher: Springer Science & Business Media
Total Pages: 217
Release: 2010-06-10
Genre: Business & Economics
ISBN: 1441962875

Driven by counter-terrorism efforts, marketing analysis and an explosion in online social networking in recent years, data mining has moved to the forefront of information science. This proposed Special Issue on Data Mining for Social Network Data will present a broad range of recent studies in social networking analysis. It will focus on emerging trends and needs in discovery and analysis of communities, solitary and social activities, activities in open for a and commercial sites as well. It will also look at network modeling, infrastructure construction, dynamic growth and evolution pattern discovery using machine learning approaches and multi-agent based simulations. Editors are three rising stars in world of data mining, knowledge discovery, social network analysis, and information infrastructures, and are anchored by Springer author/editor Hsinchun Chen (Terrorism Informatics; Medical Informatics; Digital Government), who is one of the most prominent intelligence analysis and data mining experts in the world.

Advances in Data Science

Advances in Data Science
Author: Edwin Diday
Publisher: John Wiley & Sons
Total Pages: 232
Release: 2020-01-09
Genre: Business & Economics
ISBN: 1119694965

Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.

Computing with Spatial Trajectories

Computing with Spatial Trajectories
Author: Yu Zheng
Publisher: Springer Science & Business Media
Total Pages: 328
Release: 2011-10-02
Genre: Computers
ISBN: 1461416299

Spatial trajectories have been bringing the unprecedented wealth to a variety of research communities. A spatial trajectory records the paths of a variety of moving objects, such as people who log their travel routes with GPS trajectories. The field of moving objects related research has become extremely active within the last few years, especially with all major database and data mining conferences and journals. Computing with Spatial Trajectories introduces the algorithms, technologies, and systems used to process, manage and understand existing spatial trajectories for different applications. This book also presents an overview on both fundamentals and the state-of-the-art research inspired by spatial trajectory data, as well as a special focus on trajectory pattern mining, spatio-temporal data mining and location-based social networks. Each chapter provides readers with a tutorial-style introduction to one important aspect of location trajectory computing, case studies and many valuable references to other relevant research work. Computing with Spatial Trajectories is designed as a reference or secondary text book for advanced-level students and researchers mainly focused on computer science and geography. Professionals working on spatial trajectory computing will also find this book very useful.

Recommender Systems

Recommender Systems
Author: Charu C. Aggarwal
Publisher: Springer
Total Pages: 518
Release: 2016-03-28
Genre: Computers
ISBN: 3319296590

This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

Social Internet of Things

Social Internet of Things
Author: Alessandro Soro
Publisher: Springer
Total Pages: 221
Release: 2018-07-20
Genre: Technology & Engineering
ISBN: 3319946595

The aim of this book is to stimulate research on the topic of the Social Internet of Things, and explore how Internet of Things architectures, tools, and services can be conceptualized and developed so as to reveal, amplify and inspire the capacities of people, including the socialization or collaborations that happen through or around smart objects and smart environments. From new ways of negotiating privacy, to the consequences of increased automation, the Internet of Things poses new challenges and opens up new questions that often go beyond the technology itself, and rather focus on how the technology will become embedded in our future communities, families, practices, and environment, and how these will change in turn.