Canonical Perturbation Theories

Canonical Perturbation Theories
Author: Sylvio Ferraz-Mello
Publisher: Springer Science & Business Media
Total Pages: 350
Release: 2007-05-30
Genre: Science
ISBN: 0387389059

The book is written mainly to advanced graduate and post-graduate students following courses in Perturbation Theory and Celestial Mechanics. It is also intended to serve as a guide in research work and is written in a very explicit way: all perturbation theories are given with details allowing its immediate application to real problems. In addition, they are followed by examples showing all steps of their application.

Perturbation Theory for Matrix Equations

Perturbation Theory for Matrix Equations
Author: M. Konstantinov
Publisher: Gulf Professional Publishing
Total Pages: 443
Release: 2003-05-20
Genre: Mathematics
ISBN: 0080538673

The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis.In this book a general perturbation theory for matrix algebraic equations is presented. Local and non-local perturbation bounds are derived for general types of matrix equations as well as for the most important equations arising in linear algebra and control theory. A large number of examples, tables and figures is included in order to illustrate the perturbation techniques and bounds.Key features:• The first book in this field • Can be used by a variety of specialists • Material is self-contained • Results can be used in the development of reliable computational algorithms • A large number of examples and graphical illustrations are given • Written by prominent specialists in the field

Asymptotic Analysis and Perturbation Theory

Asymptotic Analysis and Perturbation Theory
Author: William Paulsen
Publisher: CRC Press
Total Pages: 546
Release: 2013-07-18
Genre: Mathematics
ISBN: 1466515120

Beneficial to both beginning students and researchers, Asymptotic Analysis and Perturbation Theory immediately introduces asymptotic notation and then applies this tool to familiar problems, including limits, inverse functions, and integrals. Suitable for those who have completed the standard calculus sequence, the book assumes no prior knowledge o

Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction

Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction
Author: Martín Lara
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 315
Release: 2021-05-10
Genre: Science
ISBN: 3110667320

"Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations"--Print version, page 4 of cover.

Perturbations

Perturbations
Author: James A. Murdock
Publisher: SIAM
Total Pages: 358
Release: 1999-01-01
Genre: Mathematics
ISBN: 9781611971095

Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.

Quantum Field Theory for Mathematicians

Quantum Field Theory for Mathematicians
Author: Robin Ticciati
Publisher: Cambridge University Press
Total Pages: 720
Release: 1999-06-13
Genre: Mathematics
ISBN: 052163265X

This should be a useful reference for anybody with an interest in quantum theory.

Graphs in Perturbation Theory

Graphs in Perturbation Theory
Author: Michael Borinsky
Publisher: Springer
Total Pages: 186
Release: 2018-11-04
Genre: Science
ISBN: 3030035417

This book is the first systematic study of graphical enumeration and the asymptotic algebraic structures in perturbative quantum field theory. Starting with an exposition of the Hopf algebra structure of generic graphs, it reviews and summarizes the existing literature. It then applies this Hopf algebraic structure to the combinatorics of graphical enumeration for the first time, and introduces a novel method of asymptotic analysis to answer asymptotic questions. This major breakthrough has combinatorial applications far beyond the analysis of graphical enumeration. The book also provides detailed examples for the asymptotics of renormalizable quantum field theories, which underlie the Standard Model of particle physics. A deeper analysis of such renormalizable field theories reveals their algebraic lattice structure. The pedagogical presentation allows readers to apply these new methods to other problems, making this thesis a future classic for the study of asymptotic problems in quantum fields, network theory and far beyond.

Principles of Numerical Analysis

Principles of Numerical Analysis
Author: Alston S. Householder
Publisher: Courier Corporation
Total Pages: 292
Release: 2006-01-01
Genre: Mathematics
ISBN: 048645312X

Computer science rests upon the building blocks of numerical analysis. This concise treatment by an expert covers the essentials of the solution of finite systems of linear and nonlinear equations as well as the approximate representation of functions. A final section provides 54 problems, subdivided according to chapter. 1953 edition.