Recent Advances in Stochastic Operations Research

Recent Advances in Stochastic Operations Research
Author: Tadashi Dohi
Publisher: World Scientific
Total Pages: 325
Release: 2007
Genre: Business & Economics
ISBN: 9812706682

Operations research uses quantitative models to analyze and predict the behavior of systems and to provide information for decision makers. Two key concepts in operations research are optimization and uncertainty. This volume consists of a collection of peer reviewed papers from the International Workshop on Recent Advances in Stochastic Operations Research (RASOR 2005), August 25OCo26, 2005, Canmore, Alberta, Canada. In particular, the book focusses on models in stochastic operations research, including queueing models, inventory models, financial engineering models, reliability models, and simulations models."

Bounded Dynamic Stochastic Systems

Bounded Dynamic Stochastic Systems
Author: Hong Wang
Publisher: Springer Science & Business Media
Total Pages: 196
Release: 2000-02-25
Genre: Technology & Engineering
ISBN: 9781852331870

Over the past decades, although stochastic system control has been studied intensively within the field of control engineering, all the modelling and control strategies developed so far have concentrated on the performance of one or two output properties of the system. such as minimum variance control and mean value control. The general assumption used in the formulation of modelling and control strategies is that the distribution of the random signals involved is Gaussian. In this book, a set of new approaches for the control of the output probability density function of stochastic dynamic systems (those subjected to any bounded random inputs), has been developed. In this context, the purpose of control system design becomes the selection of a control signal that makes the shape of the system outputs p.d.f. as close as possible to a given distribution. The book contains material on the subjects of: - Control of single-input single-output and multiple-input multiple-output stochastic systems; - Stable adaptive control of stochastic distributions; - Model reference adaptive control; - Control of nonlinear dynamic stochastic systems; - Condition monitoring of bounded stochastic distributions; - Control algorithm design; - Singular stochastic systems. A new representation of dynamic stochastic systems is produced by using B-spline functions to descripe the output p.d.f. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Stochastic Distribution Control System Design

Stochastic Distribution Control System Design
Author: Lei Guo
Publisher: Springer
Total Pages: 0
Release: 2012-07-01
Genre: Technology & Engineering
ISBN: 9781447125594

A recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of LMI-based convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. This book describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. It starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.

Stochastic Systems

Stochastic Systems
Author: P. R. Kumar
Publisher: SIAM
Total Pages: 371
Release: 2015-12-15
Genre: Mathematics
ISBN: 1611974259

Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Stochastic Modelling of Social Processes

Stochastic Modelling of Social Processes
Author: Andreas Diekmann
Publisher: Academic Press
Total Pages: 352
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483266567

Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.

Modeling, Stochastic Control, Optimization, and Applications

Modeling, Stochastic Control, Optimization, and Applications
Author: George Yin
Publisher: Springer
Total Pages: 593
Release: 2019-07-16
Genre: Mathematics
ISBN: 3030254984

This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.

Recent Development In Stochastic Dynamics And Stochastic Analysis

Recent Development In Stochastic Dynamics And Stochastic Analysis
Author: Jinqiao Duan
Publisher: World Scientific
Total Pages: 306
Release: 2010-02-08
Genre: Mathematics
ISBN: 981446760X

Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.

Applied Stochastic Processes and Control for Jump-Diffusions

Applied Stochastic Processes and Control for Jump-Diffusions
Author: Floyd B. Hanson
Publisher: SIAM
Total Pages: 472
Release: 2007-01-01
Genre: Mathematics
ISBN: 9780898718638

This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.

Recent Advances in Model Predictive Control

Recent Advances in Model Predictive Control
Author: Timm Faulwasser
Publisher: Springer Nature
Total Pages: 250
Release: 2021-04-17
Genre: Science
ISBN: 3030632814

This book focuses on distributed and economic Model Predictive Control (MPC) with applications in different fields. MPC is one of the most successful advanced control methodologies due to the simplicity of the basic idea (measure the current state, predict and optimize the future behavior of the plant to determine an input signal, and repeat this procedure ad infinitum) and its capability to deal with constrained nonlinear multi-input multi-output systems. While the basic idea is simple, the rigorous analysis of the MPC closed loop can be quite involved. Here, distributed means that either the computation is distributed to meet real-time requirements for (very) large-scale systems or that distributed agents act autonomously while being coupled via the constraints and/or the control objective. In the latter case, communication is necessary to maintain feasibility or to recover system-wide optimal performance. The term economic refers to general control tasks and, thus, goes beyond the typically predominant control objective of set-point stabilization. Here, recently developed concepts like (strict) dissipativity of optimal control problems or turnpike properties play a crucial role. The book collects research and survey articles on recent ideas and it provides perspectives on current trends in nonlinear model predictive control. Indeed, the book is the outcome of a series of six workshops funded by the German Research Foundation (DFG) involving early-stage career scientists from different countries and from leading European industry stakeholders.