Recent Advances in Functional Data Analysis and Related Topics

Recent Advances in Functional Data Analysis and Related Topics
Author: Frédéric Ferraty
Publisher: Springer Science & Business Media
Total Pages: 322
Release: 2011-06-15
Genre: Mathematics
ISBN: 3790827363

New technologies allow us to handle increasingly large datasets, while monitoring devices are becoming ever more sophisticated. This high-tech progress produces statistical units sampled over finer and finer grids. As the measurement points become closer, the data can be considered as observations varying over a continuum. This intrinsic continuous data (called functional data) can be found in various fields of science, including biomechanics, chemometrics, econometrics, environmetrics, geophysics, medicine, etc. The failure of standard multivariate statistics to analyze such functional data has led the statistical community to develop appropriate statistical methodologies, called Functional Data Analysis (FDA). Today, FDA is certainly one of the most motivating and popular statistical topics due to its impact on crucial societal issues (health, environment, etc). This is why the FDA statistical community is rapidly growing, as are the statistical developments . Therefore, it is necessary to organize regular meetings in order to provide a state-of-art review of the recent advances in this fascinating area. This book collects selected and extended papers presented at the second International Workshop of Functional and Operatorial Statistics (Santander, Spain, 16-18 June, 2011), in which many outstanding experts on FDA will present the most relevant advances in this pioneering statistical area. Undoubtedly, these proceedings will be an essential resource for academic researchers, master students, engineers, and practitioners not only in statistics but also in numerous related fields of application.

Introduction to Functional Data Analysis

Introduction to Functional Data Analysis
Author: Piotr Kokoszka
Publisher: CRC Press
Total Pages: 371
Release: 2017-09-27
Genre: Mathematics
ISBN: 1498746691

Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.

Functional and High-Dimensional Statistics and Related Fields

Functional and High-Dimensional Statistics and Related Fields
Author: Germán Aneiros
Publisher: Springer Nature
Total Pages: 254
Release: 2020-06-19
Genre: Mathematics
ISBN: 3030477568

This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.

Nonparametric Functional Data Analysis

Nonparametric Functional Data Analysis
Author: Frédéric Ferraty
Publisher: Springer Science & Business Media
Total Pages: 260
Release: 2006-11-22
Genre: Mathematics
ISBN: 0387366202

Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.

Functional Data Analysis

Functional Data Analysis
Author: James Ramsay
Publisher: Springer Science & Business Media
Total Pages: 317
Release: 2013-11-11
Genre: Mathematics
ISBN: 147577107X

Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators
Author: Tailen Hsing
Publisher: John Wiley & Sons
Total Pages: 363
Release: 2015-05-06
Genre: Mathematics
ISBN: 0470016914

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

Geostatistical Functional Data Analysis

Geostatistical Functional Data Analysis
Author: Jorge Mateu
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2021-11-16
Genre: Social Science
ISBN: 1119387884

Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.

Topics in Nonparametric Statistics

Topics in Nonparametric Statistics
Author: Michael G. Akritas
Publisher: Springer
Total Pages: 369
Release: 2014-12-02
Genre: Mathematics
ISBN: 1493905694

This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for Non Parametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI and other organizations. M.G. Akritas, S.N. Lahiri and D.N. Politis are the first executive committee members of ISNPS and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world. The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the world and contributes to the further development of the field. The conference program included over 250 talks, including special invited talks, plenary talks and contributed talks on all areas of nonparametric statistics. Out of these talks, some of the most pertinent ones have been refereed and developed into chapters that share both research and developments in the field.

Geostatistical Functional Data Analysis

Geostatistical Functional Data Analysis
Author: Jorge Mateu
Publisher: John Wiley & Sons
Total Pages: 452
Release: 2021-12-13
Genre: Social Science
ISBN: 1119387841

Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.

Functional Data Analysis with R and MATLAB

Functional Data Analysis with R and MATLAB
Author: James Ramsay
Publisher: Springer Science & Business Media
Total Pages: 213
Release: 2009-06-29
Genre: Computers
ISBN: 0387981853

The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems