Recent Advances In Ceramic Materials Research
Download Recent Advances In Ceramic Materials Research full books in PDF, epub, and Kindle. Read online free Recent Advances In Ceramic Materials Research ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Joan Josep Roa Rovira |
Publisher | : Nova Science Publishers |
Total Pages | : 0 |
Release | : 2013 |
Genre | : Ceramic materials |
ISBN | : 9781624177293 |
Ceramic materials are usually considered as most brittle since they are full of defects, sometimes difficult to determine, that affect all their properties, from functional to mechanical. This book presents the most recent advances in the synthesis, processing and characterization of some ceramic materials. Hybrid organoceramics, lead-free piezoelectric ceramics, dental zirconia, raw clays and scintillator materials are presented, as well as different methods to evaluate their suitability for certain applications, such as a new approach based on the response surface methodology, the instrumented nanoindentation, or the use of thermal phonons. The relationship between functional characteristics of these materials and the manufacturing technology used to obtain them is also discussed in some chapters. A full review of a novel processing method to fabricate ceramic nanocomposites using SPS is also included.
Author | : Dena Rosslere |
Publisher | : Nova Publishers |
Total Pages | : 312 |
Release | : 2007 |
Genre | : Technology & Engineering |
ISBN | : 9781600217708 |
Ceramics are refractory, inorganic, and non-metallic materials. They can be divided into two classes: traditional and advanced. Traditional ceramics include clay products, silicate glass and cement; while advanced ceramics consist of carbides (SiC), pure oxides (Al2O3), nitrides (Si3N4), non-silicate glasses and many others. Ceramics offer many advantages compared to other materials. They are harder and stiffer than steel; more heat and corrosion resistant than metals or polymers; less dense than most metals and their alloys; and their raw materials are both plentiful and inexpensive. Ceramic materials display a wide range of properties which facilitate their use in many different product areas. This new book presents leading-edge research in this field from around the world.
Author | : Olivier Guillon |
Publisher | : Elsevier |
Total Pages | : 750 |
Release | : 2019-11-20 |
Genre | : Technology & Engineering |
ISBN | : 0081027842 |
In order to enable an affordable, sustainable, fossil-free future energy supply, research activities on relevant materials and related technologies have been intensified in recent years, Advanced Ceramics for Energy Conversion and Storage describes the current state-of-the-art concerning materials, properties, processes, and specific applications. Academic and industrial researchers, materials scientists, and engineers will be able to get a broad overview of the use of ceramics in energy applications, while at the same time become acquainted with the most recent developments in the field. With chapters written by recognized experts working in their respective fields the book is a valuable reference source covering the following application areas: ceramic materials and coatings for gas turbines; heat storage and exchange materials for solar thermal energy; ceramics for nuclear energy; ceramics for energy harvesting (thermoelectrics, piezoelectrics, and sunlight conversion); ceramic gas separation membranes; solid oxide fuel cells and electrolysers; and electrochemical storage in battery cells. Advanced Ceramics for Energy Conversion and Storage offers a sound base for understanding the complex requirements related to the technological fields and the ceramic materials that make them possible. The book is also suitable for people with a solid base in materials science and engineering that want to specialize in ceramics. - Presents an extensive overview of ceramic materials involved in energy conversion and storage - Updates on the tremendous progress that has been achieved in recent years - Showcases authors at the forefront of their fields, including results from the huge amount of published data - Provides a list of requirements for the materials used for each energy technology - Includes an evaluation and comparison of materials available, including their structure, properties and performance
Author | : I M Low |
Publisher | : Woodhead Publishing |
Total Pages | : 844 |
Release | : 2018-01-20 |
Genre | : Technology & Engineering |
ISBN | : 0081021674 |
Advances in Ceramic Matrix Composites, Second Edition, delivers an innovative approach to ceramic matrix composites, focusing on the latest advances and materials developments. As advanced ceramics and composite materials are increasingly utilized as components in batteries, fuel cells, sensors, high-temperature electronics, membranes and high-end biomedical devices, and in seals, valves, implants, and high-temperature and wear components, this book explores the substantial progress in new applications. Users will gain knowledge of the latest advances in CMCs, with an update on the role of ceramics in the fabrication of Solid Oxide Fuel Cells for energy generation, and on natural fiber-reinforced eco-friendly geopolymer and cement composites. The specialized information contained in this book will be highly valuable to researchers and graduate students in ceramic science, engineering and ceramic composites technology, and engineers and scientists in the aerospace, energy, building and construction, biomedical and automotive industries. - Provides detailed coverage of parts and processing, properties and applications - Includes new developments in the field, such as natural fiber-reinforced composites and the use of CMCs in Solid Oxide Fuel Cells (SOFCs) - Presents state-of-the-art research, enabling the reader to understand the latest applications for CMCs
Author | : Paola Palmero |
Publisher | : Woodhead Publishing |
Total Pages | : 501 |
Release | : 2017-09-15 |
Genre | : Technology & Engineering |
ISBN | : 0081008821 |
Bioceramics are an important class of biomaterials. Due to their desirable attributes such as biocompatibility and osseointegration, as well as their similarity in structure to bone and teeth, ceramic biomaterials have been successfully used in hard tissue applications. In this book, a team of materials research scientists, engineers, and clinicians bridge the gap between materials science and clinical commercialization providing integrated coverage of bioceramics, their applications and challenges. The book is divided into three parts. The first part is a review of classes of medical-grade ceramic materials, their synthesis and processing as well as methods of property assessment. The second part contains a review of ceramic medical products and devices developed, their evolution, their clinical applications and some of the lessons learned from decades of clinical use. The third part outlines the challenges to improve performance and the directions that novel approaches and advanced technologies are taking, to meet these challenges. With a focus on the dialogue between surgeons, engineers, material scientists, and biologists, this book is a valuable resource for researchers and engineers working toward long-lasting, reliable, customized biomedical ceramic and composites devices. - Edited by a team of experts with expertise in industry and academia - Compiles the most relevant aspects on regulatory issues, standards and engineering of bioceramic medical devices as inspired by commercial and clinical needs - Introduces bioceramics, their evolution and applications in hard tissue engineering and medical devices
Author | : C. Barry Carter |
Publisher | : Springer Science & Business Media |
Total Pages | : 775 |
Release | : 2013-01-04 |
Genre | : Technology & Engineering |
ISBN | : 1461435234 |
Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.
Author | : David Segal |
Publisher | : Cambridge University Press |
Total Pages | : 202 |
Release | : 1991-09-27 |
Genre | : Science |
ISBN | : 9780521424189 |
The first book devoted to the role of chemical synthesis techniques in advanced ceramic materials development.
Author | : Uday M. Basheer Al-Naib |
Publisher | : BoD – Books on Demand |
Total Pages | : 232 |
Release | : 2018-09-19 |
Genre | : Technology & Engineering |
ISBN | : 1789236525 |
Porous ceramics have recently gained growing importance in industry because of their many applications like filters, absorbers, dust collectors, thermal insulation, hot gas collectors, dielectric resonators, bioreactors, bone replacement and automobile engine components. Generally, porous ceramics have good properties such as mechanical strength, abrasion resistance, and chemical and thermal stability. These porous network ceramic structures also have relatively low density, low mass and low thermal conductivity. Furthermore, permeability is one of the most important properties of porous ceramics for different applications such as membranes because this property directly relates to the pressure drop during filtration. Pore size control is one key factor in fabrication of porous ceramics. The size of particles and their distribution of the raw materials, manufacturing techniques, types of binder used, distribution of binder, and sintering affect the final porosity and pore connectivity, are important things that must be considered during the manufacturing of a porous ceramic body. Therefore, the development of porous ceramic research requires sufficient mechanical and chemical stability as well as permeability. This book covers a wide range of topics such as porous ceramic structure and properties, preparation, simulation and fabrication, sintering, applications for bioceramics, sensors, magnetics and energy saving.
Author | : William G. Fahrenholtz |
Publisher | : John Wiley & Sons |
Total Pages | : 601 |
Release | : 2014-10-10 |
Genre | : Technology & Engineering |
ISBN | : 111892441X |
The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.
Author | : E.E. Gdoutos |
Publisher | : Springer Science & Business Media |
Total Pages | : 459 |
Release | : 2011-01-19 |
Genre | : Technology & Engineering |
ISBN | : 9400705573 |
This book contains 24 papers presented at the symposium on “Recent Advances in Mechanics” dedicated to the late Professor – Academician Pericles S. Theocaris in commemoration of the tenth anniversary of his death. The papers are written by world renowned and recognized experts in their fields and serve as a reference and guide for future research. The topics covered in the book can be divided into three major themes: Mathematical methods in applied mechanics (nine papers), experimental mechanics (nine papers) and fracture mechanics (six papers). Topics covered include: Application of reciprocity relations to laser-based ultrasonics, boundary value problems of the theory of elasticity, optimal design in contact mechanics, scaling of strength and lifetime distributions of quasibrittle structures, directional distortional hardening in plasticity, vibration of systems, instability phenomena in damped systems, variational methods for static and dynamic elasticity problems, an accelerated Newmark scheme for solving the equations of motion in the time domain, photoelastic tomography, electronic speckle pattern interferometry, composites exposed to fire, sampling moiré, microelecromechanical systems, experimental mechanics in nano-scale, advanced cement based nanocomposites, piezonuclear transmutations in brittle rocks under mechanical loading, stress triaxiality at crack tips studied by caustics, reinforcement of a cracked elastic plate with defects, some actual problems of fracture mechanics, cyclic plasticity with applications to extremely low cycle fatigue of structural steel, and fracture of a highly filled polymer composite.