Recent Advances in Big Data, Machine, and Deep Learning for Precision Agriculture
Author | : Muhammad Fazal Ijaz |
Publisher | : Frontiers Media SA |
Total Pages | : 379 |
Release | : 2024-02-19 |
Genre | : Science |
ISBN | : 2832544959 |
Download Recent Advances In Big Data Machine And Deep Learning For Precision Agriculture full books in PDF, epub, and Kindle. Read online free Recent Advances In Big Data Machine And Deep Learning For Precision Agriculture ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Muhammad Fazal Ijaz |
Publisher | : Frontiers Media SA |
Total Pages | : 379 |
Release | : 2024-02-19 |
Genre | : Science |
ISBN | : 2832544959 |
Author | : M. Arif Wani |
Publisher | : Springer |
Total Pages | : 300 |
Release | : 2020-12-14 |
Genre | : Technology & Engineering |
ISBN | : 9789811567582 |
This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Author | : Ramesh Chandra Poonia |
Publisher | : Academic Press |
Total Pages | : 408 |
Release | : 2022-01-09 |
Genre | : Computers |
ISBN | : 0323903622 |
The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm. - Introduces new deep learning models developed to address sustainable solutions for issues related to agriculture - Provides reviews on the latest intelligent technologies and algorithms related to the state-of-the-art methodologies of monitoring and mitigation of sustainable agriculture - Illustrates through case studies how deep learning has been used to address a variety of agricultural diseases that are currently on the cutting edge - Delivers an accessible explanation of artificial intelligence algorithms, making it easier for the reader to implement or use them in their own agricultural domain
Author | : Senthilnathan, Karthikrajan |
Publisher | : IGI Global |
Total Pages | : 332 |
Release | : 2020-10-23 |
Genre | : Technology & Engineering |
ISBN | : 1799821102 |
Deep learning includes a subset of machine learning for processing the unsupervised data with artificial neural network functions. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. When applied to engineering, deep learning can have a great impact on the decision-making process. Deep Learning Applications and Intelligent Decision Making in Engineering is a pivotal reference source that provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is ideally designed for engineers, computer scientists, programmers, software engineers, research scholars, IT professionals, academicians, and postgraduate students seeking current research on the implementation of automation and deep learning in various engineering disciplines.
Author | : Mohammad Ayoub Khan |
Publisher | : Academic Press |
Total Pages | : 332 |
Release | : 2022-05-14 |
Genre | : Business & Economics |
ISBN | : 0323906680 |
Application of Machine Learning in Smart Agriculture is the first book to present a multidisciplinary look at how technology can not only improve agricultural output, but the economic efficiency of that output as well. Through a global lens, the book approaches the subject from a technical perspective, providing important knowledge and insights for effective and efficient implementation and utilization of machine learning. As artificial intelligence techniques are being used to increase yield through optimal planting, fertilizing, irrigation, and harvesting, these are only part of the complex picture which must also take into account the economic investment and its optimized return. The performance of machine learning models improves over time as the various mathematical and statistical models are proven. Presented in three parts, Application of Machine Learning in Smart Agriculture looks at the fundamentals of smart agriculture; the economics of the technology in the agricultural marketplace; and a diverse representation of the tools and techniques currently available, and in development. This book is an important resource for advanced level students and professionals working with artificial intelligence, internet of things, technology and agricultural economics. - Addresses the technology of smart agriculture from a technical perspective - Reveals opportunities for technology to improve and enhance not only yield and quality, but the economic value of a food crop - Discusses physical instruments, simulations, sensors, and markets for machine learning in agriculture
Author | : Salim Lamine |
Publisher | : Elsevier |
Total Pages | : 555 |
Release | : 2023-10-20 |
Genre | : Technology & Engineering |
ISBN | : 0323914640 |
Remote Sensing in Precision Agriculture: Transforming Scientific Advancement into Innovation compiles the latest applications of remote sensing in agriculture using spaceborne, airborne and drones' geospatial data. The book presents case studies, new algorithms and the latest methods surrounding crop sown area estimation, determining crop health status, assessment of vegetation dynamics, crop diseases identification, crop yield estimation, soil properties, drone image analysis for crop damage assessment, and other issues in precision agriculture. This book is ideal for those seeking to explore and implement remote sensing in an effective and efficient manner with its compendium of scientifically and technologically sound information. - Presents a well-integrated collection of chapters, with quality, consistency and continuity - Provides the latest RS techniques in Precision Agriculture that are addressed by leading experts - Includes detailed, yet geographically global case studies that can be easily understood, reproduced or implemented - Covers geospatial data, with codes available through shared links
Author | : Shailesh Tiwari |
Publisher | : Springer |
Total Pages | : 510 |
Release | : 2018-11-19 |
Genre | : Technology & Engineering |
ISBN | : 981132414X |
The book presents the latest advances and research findings in the fields of computational science and communication. The areas covered include smart innovation; systems and technologies; embedded knowledge and intelligence; innovation and sustainability; advanced computing; and networking and informatics. It also focuses on the knowledge-transfer methodologies and the innovation strategies employed to make these effective. This fascinating compilation appeals to researchers, academics and engineers around the globe.
Author | : Tomar, Pradeep |
Publisher | : IGI Global |
Total Pages | : 400 |
Release | : 2021-01-08 |
Genre | : Technology & Engineering |
ISBN | : 1799817245 |
As technology continues to saturate modern society, agriculture has started to adopt digital computing and data-driven innovations. This emergence of “smart” farming has led to various advancements in the field, including autonomous equipment and the collection of climate, livestock, and plant data. As connectivity and data management continue to revolutionize the farming industry, empirical research is a necessity for understanding these technological developments. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture provides emerging research exploring the theoretical and practical aspects of critical technological solutions within the farming industry. Featuring coverage on a broad range of topics such as crop monitoring, precision livestock farming, and agronomic data processing, this book is ideally designed for farmers, agriculturalists, product managers, farm holders, manufacturers, equipment suppliers, industrialists, governmental professionals, researchers, academicians, and students seeking current research on technological applications within agriculture and farming.
Author | : Wang, John |
Publisher | : IGI Global |
Total Pages | : 3296 |
Release | : 2023-01-20 |
Genre | : Computers |
ISBN | : 1799892212 |
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Author | : Adam Bohr |
Publisher | : Academic Press |
Total Pages | : 385 |
Release | : 2020-06-21 |
Genre | : Computers |
ISBN | : 0128184396 |
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data