Hyperspectral Image Analysis

Hyperspectral Image Analysis
Author: Saurabh Prasad
Publisher: Springer Nature
Total Pages: 464
Release: 2020-04-27
Genre: Computers
ISBN: 3030386171

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Author: Yakoub Bazi
Publisher: MDPI
Total Pages: 438
Release: 2021-06-15
Genre: Science
ISBN: 3036509860

The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.

Small Satellites for Earth Observation

Small Satellites for Earth Observation
Author: Rainer Sandau
Publisher: Springer Science & Business Media
Total Pages: 399
Release: 2008-04-18
Genre: Technology & Engineering
ISBN: 140206943X

The 6th IAA Symposium on Small Satellites for Earth Observation, initiated by the International Academy of Astronautics (IAA), was again hosted by DLR, the German Aerospace Center. The participation of scientists, engineers, and managers from 24 countries reflected the high interest in the use of small satellites for dedicated missions applied to Earth observation. The contributions showed that dedicated Earth observation missions cover a wide range of very different tasks.

The Role of Small Satellites in NASA and NOAA Earth Observation Programs

The Role of Small Satellites in NASA and NOAA Earth Observation Programs
Author: National Research Council
Publisher: National Academies Press
Total Pages: 104
Release: 2000-05-12
Genre: Science
ISBN: 0309069823

Remote observations of Earth from space serve an extraordinarily broad range of purposes, resulting in extraordinary demands on those at the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and elsewhere who must decide how to execute them. In research, Earth observations promise large volumes of data to a variety of disciplines with differing needs for measurement type, simultaneity, continuity, and long-term instrument stability. Operational needs, such as weather forecasting, add a distinct set of requirements for continual and highly reliable monitoring of global conditions. The Role of Small Satellites in NASA and NOAA Earth Observation Programs confronts these diverse requirements and assesses how they might be met by small satellites. In the past, the preferred architecture for most NASA and NOAA missions was a single large spacecraft platform containing a sophisticated suite of instruments. But the recognition in other areas of space research that cost-effectiveness, flexibility, and robustness may be enhanced by using small spacecraft has raised questions about this philosophy of Earth observation. For example, NASA has already abandoned its original plan for a follow-on series of major platforms in its Earth Observing System. This study finds that small spacecraft can play an important role in Earth observation programs, providing to this field some of the expected benefits that are normally associated with such programs, such as rapid development and lower individual mission cost. It also identifies some of the programmatic and technical challenges associated with a mission composed of small spacecraft, as well as reasons why more traditional, larger platforms might still be preferred. The reasonable conclusion is that a systems-level examination is required to determine the optimum architecture for a given scientific and/or operational objective. The implied new challenge is for NASA and NOAA to find intra- and interagency planning mechanisms that can achieve the most appropriate and cost-effective balance among their various requirements.

Geospatial Technology for Earth Observation

Geospatial Technology for Earth Observation
Author: Deren Li
Publisher: Springer Science & Business Media
Total Pages: 555
Release: 2009-09-18
Genre: Science
ISBN: 1441900500

Earth Observation interacts with space, remote sensing, communication, and information technologies, and plays an increasingly significant role in Earth related scientific studies, resource management, homeland security, topographic mapping, and development of a healthy, sustainable environment and community. Geospatial Technology for Earth Observation provides an in-depth and broad collection of recent progress in Earth observation. Contributed by leading experts in this field, the book covers satellite, airborne and ground remote sensing systems and system integration, sensor orientation, remote sensing physics, image classification and analysis, information extraction, geospatial service, and various application topics, including cadastral mapping, land use change evaluation, water environment monitoring, flood mapping, and decision making support. Geospatial Technology for Earth Observation serves as a valuable training source for researchers, developers, and practitioners in geospatial science and technology industry. It is also suitable as a reference book for upper level college students and graduate students in geospatial technology, geosciences, resource management, and informatics.

Remote Sensing Time Series

Remote Sensing Time Series
Author: Claudia Kuenzer
Publisher: Springer
Total Pages: 458
Release: 2015-04-28
Genre: Technology & Engineering
ISBN: 3319159674

This volume comprises an outstanding variety of chapters on Earth Observation based time series analyses, undertaken to reveal past and current land surface dynamics for large areas. What exactly are time series of Earth Observation data? Which sensors are available to generate real time series? How can they be processed to reveal their valuable hidden information? Which challenges are encountered on the way and which pre-processing is needed? And last but not least: which processes can be observed? How are large regions of our planet changing over time and which dynamics and trends are visible? These and many other questions are answered within this book “Remote Sensing Time Series Analyses – Revealing Land Surface Dynamics”. Internationally renowned experts from Europe, the USA and China present their exciting findings based on the exploitation of satellite data archives from well-known sensors such as AVHRR, MODIS, Landsat, ENVISAT, ERS and METOP amongst others. Selected review and methods chapters provide a good overview over time series processing and the recent advances in the optical and radar domain. A fine selection of application chapters addresses multi-class land cover and land use change at national to continental scale, the derivation of patterns of vegetation phenology, biomass assessments, investigations on snow cover duration and recent dynamics, as well as urban sprawl observed over time.

Polarimetric Radar Imaging

Polarimetric Radar Imaging
Author: Jong-Sen Lee
Publisher: CRC Press
Total Pages: 422
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1420054988

The recent launches of three fully polarimetric synthetic aperture radar (PolSAR) satellites have shown that polarimetric radar imaging can provide abundant data on the Earth’s environment, such as biomass and forest height estimation, snow cover mapping, glacier monitoring, and damage assessment. Written by two of the most recognized leaders in this field, Polarimetric Radar Imaging: From Basics to Applications presents polarimetric radar imaging and processing techniques and shows how to develop remote sensing applications using PolSAR imaging radar. The book provides a substantial and balanced introduction to the basic theory and advanced concepts of polarimetric scattering mechanisms, speckle statistics and speckle filtering, polarimetric information analysis and extraction techniques, and applications typical to radar polarimetric remote sensing. It explains the importance of wave polarization theory and the speckle phenomenon in the information retrieval problem of microwave imaging and inverse scattering. The authors demonstrate how to devise intelligent information extraction algorithms for remote sensing applications. They also describe more advanced polarimetric analysis techniques for polarimetric target decompositions, polarization orientation effects, polarimetric scattering modeling, speckle filtering, terrain and forest classification, manmade target analysis, and PolSAR interferometry. With sample PolSAR data sets and software available for download, this self-contained, hands-on book encourages you to analyze space-borne and airborne PolSAR and polarimetric interferometric SAR (Pol-InSAR) data and then develop applications using this data.

Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences
Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
Total Pages: 436
Release: 2021-08-18
Genre: Technology & Engineering
ISBN: 1119646162

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

High Performance Computing in Remote Sensing

High Performance Computing in Remote Sensing
Author: Antonio J Plaza
Publisher: CRC Press
Total Pages: 496
Release: 2019-08-30
Genre:
ISBN: 9780367388478

Solutions for Time-Critical Remote Sensing Applications The recent use of latest-generation sensors in airborne and satellite platforms is producing a nearly continual stream of high-dimensional data, which, in turn, is creating new processing challenges. To address the computational requirements of time-critical applications, researchers have begun incorporating high performance computing (HPC) models in remote sensing missions. High Performance Computing in Remote Sensing is one of the first volumes to explore state-of-the-art HPC techniques in the context of remote sensing problems. It focuses on the computational complexity of algorithms that are designed for parallel computing and processing. A Diverse Collection of Parallel Computing Techniques and Architectures The book first addresses key computing concepts and developments in remote sensing. It also covers application areas not necessarily related to remote sensing, such as multimedia and video processing. Each subsequent chapter illustrates a specific parallel computing paradigm, including multiprocessor (cluster-based) systems, large-scale and heterogeneous networks of computers, grid computing platforms, and specialized hardware architectures for remotely sensed data analysis and interpretation. An Interdisciplinary Forum to Encourage Novel Ideas The extensive reviews of current and future developments combined with thoughtful perspectives on the potential challenges of adapting HPC paradigms to remote sensing problems will undoubtedly foster collaboration and development among many fields.

Satellite Remote Sensing

Satellite Remote Sensing
Author: Rosa Lasaponara
Publisher: Springer Science & Business Media
Total Pages: 369
Release: 2012-01-18
Genre: Technology & Engineering
ISBN: 9048188016

This book provides a state-of-the art overview of satellite archaeology and it is an invaluable volume for archaeologists, scientists, and managers interested in using satellite Earth Observation (EO) to improve the traditional approach for archaeological investigation, protection and management of Cultural Heritage. The recent increasing development of EO techniques and the tremendous advances in Information and Communication Technologies (ICT) have resulted primarily in Cultural Heritage applications. The book focuses on new challenging prospects for the use of EO in archaeology not only for probing the subsurface to unveil sites and artifacts, but also for the management and valorization as well as for the monitoring and preservation of cultural resources. The book provides a first-class understanding of this revolutionary scenario which was unthinkable several years ago. The book offers: (i) an excellent collection of outstanding articles focusing on satellite data processing, analysis and interpretation for archaeological applications, (ii) impressive case studies, (iii) striking examples of the high potential of the integration of multi-temporal, multi-scale, multi-sensors techniques. Each chapter is composed as an authoritative contribution to help the reader grasp the value of its content. The authors are renowned experts from the international scientific community. Audience: This book will be of interest to scientists in remote sensing applied to archeology, geoarcheology, paleo-environment, paleo-climate and cultural heritage.