Noise and Nonlinear Phenomena in Nuclear Systems

Noise and Nonlinear Phenomena in Nuclear Systems
Author: J.L. Munoz-Cobo
Publisher: Springer Science & Business Media
Total Pages: 452
Release: 2013-06-29
Genre: Science
ISBN: 146845613X

The main goal of the meeting was to facilitate and encourage the application of recent developments in the physical and mathematical sciences to the analysis of deterministic and stochastic processes in nuclear engineering. In contrast with the rapid growth (triggered by computer developments) of nonlinear analysis in other branches of the physical sciences, the theoretical analysis of nuclear reactors is still based on linearized models of the neutronics and thermal-hydraulic feedback loop, an approach that ignores some intrinsic nonlinearities of the real system. The subject of noise was added because of the importance of the noise technique in detecting abnormalities associated with perturbations of sufficient amplitude to generate nonlinear processes. Consequently the organizers of the meeting invited a group of leading researchers in the field of noise and nonlinear phenomena in nuclear systems to report on recent advances in their area of research. A selected subgroup of researchers in areas outside the reactor field provided enlightenment on new theoretical developments of immediate relevance to nuclear dynamics theory.

Random Processes in Nuclear Reactors

Random Processes in Nuclear Reactors
Author: M. M. R. Williams
Publisher: Elsevier
Total Pages: 258
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483187276

Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources. The book will be very useful to nuclear engineers.

Frequency Response Testing in Nuclear Reactors

Frequency Response Testing in Nuclear Reactors
Author: T Kerlin
Publisher: Elsevier
Total Pages: 189
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0323160514

Frequency Response Testing in Nuclear Reactors presents the optimum testing procedures for measurements in power reactors. This eight-chapter book emphasizes the determination of the system frequency response using nonsinusoidal input perturbations, which are useful since normal power reactor hardware can be used. This text deals first with the mathematical aspects of frequency response testing, with a particular emphasis on numerical Fourier transformations using analog or digital equipment. The subsequent chapters examine the important signals for use in frequency responses tests and the analysis of these signals using analog and digital computing equipment. The discussion then shifts to the frequency response functions that describe nuclear reactor dynamics. This topic is followed by a presentation of techniques for extracting useful information from test results. A chapter highlights the most common control-rod drive mechanisms to assess their suitability for dynamics testing. The concluding chapter provides a brief summary of significant experiences with dynamics tests in nuclear reactors. Scientists, researchers, and workers in the field of nuclear reactors and related subjects will find this book invaluable.

Reactor Noise

Reactor Noise
Author: Joseph A. Thie
Publisher:
Total Pages: 288
Release: 1963
Genre: Nuclear reactors
ISBN:

The Physics of Nuclear Reactors

The Physics of Nuclear Reactors
Author: Serge Marguet
Publisher: Springer
Total Pages: 1462
Release: 2018-02-26
Genre: Science
ISBN: 3319595601

This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.