Radial Basis Function Networks 1

Radial Basis Function Networks 1
Author: Robert J.Howlett
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2001-03-27
Genre: Computers
ISBN: 9783790813678

The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 1 covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms, for example RBF learning using genetic algorithms. Both volumes will prove extremely useful to practitioners in the field, engineers, researchers and technically accomplished managers.

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems
Author: Jinkun Liu
Publisher: Springer Science & Business Media
Total Pages: 375
Release: 2013-01-26
Genre: Technology & Engineering
ISBN: 3642348165

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.

Radial Basis Function Neural Networks with Sequential Learning

Radial Basis Function Neural Networks with Sequential Learning
Author: N. Sundararajan
Publisher: World Scientific
Total Pages: 236
Release: 1999
Genre: Science
ISBN: 9789810237714

A review of radial basis founction (RBF) neural networks. A novel sequential learning algorithm for minimal resource allocation neural networks (MRAN). MRAN for function approximation & pattern classification problems; MRAN for nonlinear dynamic systems; MRAN for communication channel equalization; Concluding remarks; A outline source code for MRAN in MATLAB; Bibliography; Index.

Fully Tuned Radial Basis Function Neural Networks for Flight Control

Fully Tuned Radial Basis Function Neural Networks for Flight Control
Author: N. Sundararajan
Publisher: Springer Science & Business Media
Total Pages: 167
Release: 2013-03-09
Genre: Science
ISBN: 1475752865

Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.

Self-Organizing Neural Networks

Self-Organizing Neural Networks
Author: Udo Seiffert
Publisher: Physica
Total Pages: 289
Release: 2013-11-11
Genre: Computers
ISBN: 3790818100

The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative community of interna tional researchers. A number of extensions and modifications have been developed during the last two decades. The reason is surely not that the original algorithm was imperfect or inad equate. It is rather the universal applicability and easy handling of the SOM. Com pared to many other network paradigms, only a few parameters need to be arranged and thus also for a beginner the network leads to useful and reliable results. Never theless there is scope for improvements and sophisticated new developments as this book impressively demonstrates. The number of published applications utilizing the SOM appears to be unending. As the title of this book indicates, the reader will benefit from some of the latest the oretical developments and will become acquainted with a number of challenging real-world applications. Our aim in producing this book has been to provide an up to-date treatment of the field of self-organizing neural networks, which will be ac cessible to researchers, practitioners and graduated students from diverse disciplines in academics and industry. We are very grateful to the father of the SOMs, Professor Teuvo Kohonen for sup porting this book and contributing the first chapter.

Neural Networks and Soft Computing

Neural Networks and Soft Computing
Author: Leszek Rutkowski
Publisher: Springer Science & Business Media
Total Pages: 935
Release: 2013-03-20
Genre: Computers
ISBN: 3790819026

This volume presents new trends and developments in soft computing techniques. Topics include: neural networks, fuzzy systems, evolutionary computation, knowledge discovery, rough sets, and hybrid methods. It also covers various applications of soft computing techniques in economics, mechanics, medicine, automatics and image processing. The book contains contributions from internationally recognized scientists, such as Zadeh, Bubnicki, Pawlak, Amari, Batyrshin, Hirota, Koczy, Kosinski, Novák, S.-Y. Lee, Pedrycz, Raudys, Setiono, Sincak, Strumillo, Takagi, Usui, Wilamowski and Zurada. An excellent overview of soft computing methods and their applications.

Neural Networks and Statistical Learning

Neural Networks and Statistical Learning
Author: Ke-Lin Du
Publisher: Springer Science & Business Media
Total Pages: 834
Release: 2013-12-09
Genre: Technology & Engineering
ISBN: 1447155718

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

Radial Basis Functions

Radial Basis Functions
Author: Martin D. Buhmann
Publisher: Cambridge University Press
Total Pages: 271
Release: 2003-07-03
Genre: Mathematics
ISBN: 1139435248

The author's aim is to give a thorough treatment from both the theoretical and practical implementation viewpoints. For example, he emphasises the many positive features of radial basis functions such as the unique solvability of the interpolation problem, the computation of interpolants, their smoothness and convergence and provides a careful classification of the radial basis functions into types that have different convergence

Numerical Methods for the Solution of Ill-Posed Problems

Numerical Methods for the Solution of Ill-Posed Problems
Author: A.N. Tikhonov
Publisher: Springer Science & Business Media
Total Pages: 257
Release: 2013-03-09
Genre: Mathematics
ISBN: 940158480X

Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.

Artificial Neural Networks for Speech and Vision

Artificial Neural Networks for Speech and Vision
Author: Richard J. Mammone
Publisher: Kluwer Academic Publishers
Total Pages: 616
Release: 1994
Genre: Computers
ISBN:

Presents some of the most promising current research in the design and training of artificial neural networks (ANNs) with applications in speech and vision, as reported by the investigators themselves. The volume is divided into three sections. The first gives an overview of the general field of ANN.