Quaternionic Structures in Mathematics and Physics

Quaternionic Structures in Mathematics and Physics
Author: Stefano Marchiafava
Publisher: World Scientific
Total Pages: 486
Release: 2001
Genre: Mathematics
ISBN: 981281003X

During the last five years, after the first meeting on OC Quaternionic Structures in Mathematics and PhysicsOCO, interest in quaternionic geometry and its applications has continued to increase. Progress has been made in constructing new classes of manifolds with quaternionic structures (quaternionic Knhler, hyper-Knhler, hyper-complex, etc.), studying the differential geometry of special classes of such manifolds and their submanifolds, understanding relations between the quaternionic structure and other differential-geometric structures, and also in physical applications of quaternionic geometry. Some generalizations of classical quaternion-like structures (like HKT structures and hyper-Knhler manifolds with singularities) appeared naturally and were studied. Some of those results are published in this book. Contents: Hypercomplex Structures on Special Classes of Nilpotent and Solvable Lie Groups (M L Barberis); Twistor Quotients of HyperKnhler Manifolds (R Bielawski); Quaternionic Contact Structures (O Biquard); A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures (V Cortes); Quaternion Knhler Flat Manifolds (I G Dotti); A Canonical HyperKnhler Metric on the Total Space of a Cotangent Bundle (D Kaledin); Special Spinors and Contact Geometry (A Moroianu); Brane Solitons and Hypercomplex Structures (G Papadopoulos); Hypercomplex Geometry (H Pedersen); Examples of HyperKnhler Connections with Torsion (Y S Poon); A New Weight System on Chord Diagrams via HyperKnhler Geometry (J Sawon); Vanishing Theorems for Quaternionic Knhler Manifolds (U Semmelmann & G Weingart); Weakening Holonomy (A Swann); Special Knhler Geometry (A Van Proeyen); Singularities in HyperKnhler Geometry (M Verbitsky); and other papers. Readership: Researchers and graduate students in geometry, topology, mathematical physics and theoretical physics."

Quaternions, Clifford Algebras and Relativistic Physics

Quaternions, Clifford Algebras and Relativistic Physics
Author: Patrick R. Girard
Publisher: Springer Science & Business Media
Total Pages: 177
Release: 2007-06-25
Genre: Mathematics
ISBN: 3764377917

The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.

Quaternionic Structures In Mathematics And Physics - Proceedings Of The Second Meeting

Quaternionic Structures In Mathematics And Physics - Proceedings Of The Second Meeting
Author: Stefano Marchiafava
Publisher: World Scientific
Total Pages: 486
Release: 2001-07-11
Genre: Mathematics
ISBN: 9814490970

During the last five years, after the first meeting on “Quaternionic Structures in Mathematics and Physics”, interest in quaternionic geometry and its applications has continued to increase. Progress has been made in constructing new classes of manifolds with quaternionic structures (quaternionic Kähler, hyper-Kähler, hyper-complex, etc.), studying the differential geometry of special classes of such manifolds and their submanifolds, understanding relations between the quaternionic structure and other differential-geometric structures, and also in physical applications of quaternionic geometry. Some generalizations of classical quaternion-like structures (like HKT structures and hyper-Kähler manifolds with singularities) appeared naturally and were studied. Some of those results are published in this book.

Trends in Complex Analysis, Differential Geometry, and Mathematical Physics

Trends in Complex Analysis, Differential Geometry, and Mathematical Physics
Author: Stancho Dimiev
Publisher: World Scientific
Total Pages: 248
Release: 2003
Genre: Mathematics
ISBN: 9812384529

The Sixth International Workshop on Complex Structures and Vector Fields was a continuation of the previous five workshops (1992, 1994, 1996, 1998, 2000) on similar research projects. This series of workshops aims at higher achievements in studies of new research subjects. The present volume will meet with the satisfaction of many readers.

Trends In Complex Analysis, Differential Geometry And Mathematical Physics - Proceedings Of The 6th International Workshop On Complex Structures And Vector Fields

Trends In Complex Analysis, Differential Geometry And Mathematical Physics - Proceedings Of The 6th International Workshop On Complex Structures And Vector Fields
Author: Stancho Dimiev
Publisher: World Scientific
Total Pages: 248
Release: 2003-06-13
Genre: Mathematics
ISBN: 9814485454

The Sixth International Workshop on Complex Structures and Vector Fields was a continuation of the previous five workshops (1992, 1994, 1996, 1998, 2000) on similar research projects. This series of workshops aims at higher achievements in studies of new research subjects. The present volume will meet with the satisfaction of many readers.

Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics
Author: Rafał Abłamowicz
Publisher: Springer Science & Business Media
Total Pages: 346
Release: 2000
Genre: Mathematics
ISBN: 9780817641832

The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.

Riemannian Topology and Geometric Structures on Manifolds

Riemannian Topology and Geometric Structures on Manifolds
Author: Krzysztof Galicki
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2010-07-25
Genre: Mathematics
ISBN: 0817647430

Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer’s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kähler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest.

Physics from Symmetry

Physics from Symmetry
Author: Jakob Schwichtenberg
Publisher: Springer
Total Pages: 294
Release: 2017-12-01
Genre: Science
ISBN: 3319666312

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.

Differential Geometry of Lightlike Submanifolds

Differential Geometry of Lightlike Submanifolds
Author: Krishan L. Duggal
Publisher: Springer Science & Business Media
Total Pages: 484
Release: 2011-02-02
Genre: Mathematics
ISBN: 3034602510

This book presents research on the latest developments in differential geometry of lightlike (degenerate) subspaces. The main focus is on hypersurfaces and a variety of submanifolds of indefinite Kählerian, Sasakian and quaternion Kähler manifolds.