Quantum Dynamics
Download Quantum Dynamics full books in PDF, epub, and Kindle. Read online free Quantum Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Domenico D’Alessandro |
Publisher | : CRC Press |
Total Pages | : 372 |
Release | : 2021-07-28 |
Genre | : Mathematics |
ISBN | : 1000395057 |
The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental physics behind the analysis and control of quantum dynamics, emphasizing the application of Lie algebra and Lie group theory. To advantage students, instructors and practitioners, and since the field is highly interdisciplinary, this book presents an introduction with all the basic notions in the same place. The field has seen a large development in parallel with the neighboring fields of quantum information, computation and communication. The author has maintained an introductory level to encourage course use. After introducing the basics of quantum mechanics, the book derives a class of models for quantum control systems from fundamental physics. It examines the controllability and observability of quantum systems and the related problem of quantum state determination and measurement. The author also uses Lie group decompositions as tools to analyze dynamics and to design control algorithms. In addition, he describes various other control methods and discusses topics in quantum information theory that include entanglement and entanglement dynamics. Changes to the New Edition: New Chapter 4: Uncontrollable Systems and Dynamical Decomposition New section on quantum control landscapes A brief discussion of the experiments that earned the 2012 Nobel Prize in Physics Corrections and revised concepts are made to improve accuracy Armed with the basics of quantum control and dynamics, readers will invariably use this interdisciplinary knowledge in their mathematics, physics and engineering work.
Author | : Hans-Dieter Meyer |
Publisher | : John Wiley & Sons |
Total Pages | : 447 |
Release | : 2009-05-26 |
Genre | : Science |
ISBN | : 3527320180 |
The first book dedicated to this new and powerful computational method begins with a comprehensive description of MCTDH and its theoretical background. There then follows a discussion of recent extensions of MCTDH, such as the treatment of identical particles, leading to the MCTDHF and MCTDHB methods for fermions and bosons. The third section presents a wide spectrum of very different applications to reflect the large diversity of problems that can be tackled by MCTDH. The result is handbook and ready reference for theoretical chemists, physicists, chemists, graduate students, lecturers and software producers.
Author | : Robert E. Wyatt |
Publisher | : Springer Science & Business Media |
Total Pages | : 425 |
Release | : 2006-05-28 |
Genre | : Mathematics |
ISBN | : 0387281452 |
This is a rapidly developing field to which the author is a leading contributor New methods in quantum dynamics and computational techniques, with applications to interesting physical problems, are brought together in this book Useful to both students and researchers
Author | : Fabien Gatti |
Publisher | : Springer Science & Business Media |
Total Pages | : 281 |
Release | : 2014-04-09 |
Genre | : Science |
ISBN | : 3642452906 |
This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.
Author | : Wolfgang Yourgrau |
Publisher | : Courier Corporation |
Total Pages | : 222 |
Release | : 2012-04-26 |
Genre | : Science |
ISBN | : 0486151131 |
DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div
Author | : Eric R. Bittner |
Publisher | : CRC Press |
Total Pages | : 336 |
Release | : 2009-07-21 |
Genre | : Science |
ISBN | : 1439882142 |
Even though time-dependent spectroscopic techniques continue to push the frontier of chemical physics, they receive scant mention in introductory courses and are poorly covered in standard texts. Quantum Dynamics: Applications in Biological and Materials Systems bridges the gap between what is traditionally taught in a one-semester quantum chemistr
Author | : Stefan Teufel |
Publisher | : Springer Science & Business Media |
Total Pages | : 248 |
Release | : 2003 |
Genre | : Perturbation (Quantum dynamics) |
ISBN | : 9783540407232 |
Author | : David J. Tannor |
Publisher | : University Science Books |
Total Pages | : 600 |
Release | : 2018-02-01 |
Genre | : Science |
ISBN | : 9781891389993 |
Introduction to Quantum Mechanics covers quantum mechanics from a time-dependent perspective in a unified way from beginning to end. Intended for upper-level undergraduate and graduate courses this text will change the way people think about and teach quantum mechanics in chemistry and physics departments.
Author | : Leticia González |
Publisher | : John Wiley & Sons |
Total Pages | : 52 |
Release | : 2021-02-01 |
Genre | : Science |
ISBN | : 1119417759 |
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Author | : Dieter Bauer |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 355 |
Release | : 2017-04-24 |
Genre | : Science |
ISBN | : 3110419343 |
This graduate textbook introduces the com-putational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach. Contents How to propagate a wavefunction? Calculation of typical strong-field observables Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein-Gordon equation Time-dependent density functional theory The multiconfiguration time-dependent Hartree-Fock method Time-dependent configuration interaction singles Strong-field approximation and quantum orbits Microscopic particle-in-cell approach