Quantum Computation and Quantum Information

Quantum Computation and Quantum Information
Author: Michael A. Nielsen
Publisher: Cambridge University Press
Total Pages: 709
Release: 2010-12-09
Genre: Science
ISBN: 1139495488

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Information, Computation and Communication

Quantum Information, Computation and Communication
Author: Jonathan A. Jones
Publisher: Cambridge University Press
Total Pages: 209
Release: 2012-07-19
Genre: Science
ISBN: 1107014468

Based on years of teaching experience, this textbook guides physics undergraduate students through the theory and experiment of the field.

Quantum Computing

Quantum Computing
Author: Eleanor G. Rieffel
Publisher: MIT Press
Total Pages: 389
Release: 2011-03-04
Genre: Business & Economics
ISBN: 0262015064

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

Quantum Information and Quantum Computing

Quantum Information and Quantum Computing
Author: Mikio Nakahara
Publisher: World Scientific
Total Pages: 194
Release: 2013
Genre: Computers
ISBN: 9814425222

The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of the contributions will serve as a short introduction to these cutting edge research fields.

A First Introduction to Quantum Computing and Information

A First Introduction to Quantum Computing and Information
Author: Bernard Zygelman
Publisher: Springer
Total Pages: 0
Release: 2019-01-04
Genre: Computers
ISBN: 9783030062712

This book addresses and introduces new developments in the field of Quantum Information and Computing (QIC) for a primary audience of undergraduate students. Developments over the past few decades have spurred the need for QIC courseware at major research institutions. This book broadens the exposure of QIC science to the undergraduate market. The subject matter is introduced in such a way so that it is accessible to students with only a first-year calculus background. Greater accessibility allows a broader range of academic offerings. Courses, based on this book, could be offered in the Physics, Engineering, Math and Computer Science departments. This textbook incorporates Mathematica-based examples into the book. In this way students are allowed a hands-on experience in which difficult abstract concepts are actualized by simulations. The students can ‘turn knobs" in parameter space and explore how the system under study responds. The incorporation of symbolic manipulation software into course-ware allows a more holistic approach to the teaching of difficult concepts. Mathematica software is used here because it is easy to use and allows a fast learning curve for students who have limited experience with scientific programming.

Problems And Solutions In Quantum Computing And Quantum Information

Problems And Solutions In Quantum Computing And Quantum Information
Author: Willi-hans Steeb
Publisher: World Scientific Publishing Company
Total Pages: 262
Release: 2004-03-29
Genre:
ISBN: 9813106255

Quantum computing and quantum information are two of the fastest-growing and most exciting research areas in physics. The possibilities of using non-local behaviour of quantum mechanics to factorize integers in random polynomial time have added to this new interest. This invaluable book provides a collection of problems in quantum computing and quantum information together with detailed solutions. It consists of two parts: in the first part finite-dimensional systems are considered, while the second part deals with finite-dimensional systems.All the important concepts and topics are included, such as quantum gates and quantum circuits, entanglement, teleportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gates, von Neumann entropy, quantum cryptography, quantum error correction, coherent states, squeezed states, POVM measurement, beam splitter and Kerr-Hamilton operator. The topics range in difficulty from elementary to advanced. Almost all of the problems are solved in detail and most of them are self-contained. All relevant definitions are given.Students can learn from this book important principles and strategies required for problem solving. Teachers will find it useful as a supplement, since important concepts and techniques are developed through the problems. It can also be used as a text or a supplement for linear and multilinear algebra or matrix theory.

NMR Quantum Information Processing

NMR Quantum Information Processing
Author: Ivan Oliveira
Publisher: Elsevier
Total Pages: 265
Release: 2011-04-18
Genre: Science
ISBN: 0080497527

Quantum Computation and Quantum Information (QIP) deals with the identification and use of quantum resources for information processing. This includes three main branches of investigation: quantum algorithm design, quantum simulation andquantum communication, including quantum cryptography. Along the past few years, QIP has become one of the most active area ofresearch in both, theoretical and experimental physics, attracting students and researchers fascinated, not only by the potentialpractical applications of quantum computers, but also by the possibility of studying fundamental physics at the deepest level of quantum phenomena.NMR Quantum Computation and Quantum Information Processing describes the fundamentals of NMR QIP, and the main developments which can lead to a large-scale quantum processor. The text starts with a general chapter onthe interesting topic of the physics of computation. The very first ideas which sparkled the development of QIP came from basic considerations of the physical processes underlying computational actions. In Chapter 2 it is made an introduction to NMR, including the hardware and other experimental aspects of the technique. InChapter 3 we revise the fundamentals of Quantum Computation and Quantum Information. The chapter is very much based on the extraordinary book of Michael A. Nielsen and Isaac L. Chuang, withan upgrade containing some of the latest developments, such as QIP in phase space, and telecloning. Chapter 4 describes how NMRgenerates quantum logic gates from radiofrequency pulses, upon which quantum protocols are built. It also describes the important technique of Quantum State Tomography for both, quadrupole and spin1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm implementation by NMR, quantum simulation and QIP in phase space. The important issue of entanglement in NMR QIPexperiments is discussed in Chapter 6. This has been a particularly exciting topic in the literature. The chapter contains a discussionon the theoretical aspects of NMR entanglement, as well as some of the main experiments where this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR QIP, based invery recent developments in nanofabrication and single-spin detection experiments. Each chapter is followed by a number of problems and solutions.* Presents a large number of problems with solutions, ideal for students* Brings together topics in different areas: NMR, nanotechnology, quantum computation * Extensive references

Quantum Computing for Everyone

Quantum Computing for Everyone
Author: Chris Bernhardt
Publisher: MIT Press
Total Pages: 214
Release: 2019-03-19
Genre: Computers
ISBN: 0262350947

An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.

Mathematics of Quantum Computing

Mathematics of Quantum Computing
Author: Wolfgang Scherer
Publisher: Springer Nature
Total Pages: 764
Release: 2019-11-13
Genre: Computers
ISBN: 3030123588

This textbook presents the elementary aspects of quantum computing in a mathematical form. It is intended as core or supplementary reading for physicists, mathematicians, and computer scientists taking a first course on quantum computing. It starts by introducing the basic mathematics required for quantum mechanics, and then goes on to present, in detail, the notions of quantum mechanics, entanglement, quantum gates, and quantum algorithms, of which Shor's factorisation and Grover's search algorithm are discussed extensively. In addition, the algorithms for the Abelian Hidden Subgroup and Discrete Logarithm problems are presented and the latter is used to show how the Bitcoin digital signature may be compromised. It also addresses the problem of error correction as well as giving a detailed exposition of adiabatic quantum computing. The book contains around 140 exercises for the student, covering all of the topics treated, together with an appendix of solutions.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publisher: Academic Press
Total Pages: 597
Release: 2012-04-16
Genre: Computers
ISBN: 0123854911

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits