Quantitative Susceptibility Mapping Of Human Brain By Magnetic Resonance Imaging At 3 Tesla
Download Quantitative Susceptibility Mapping Of Human Brain By Magnetic Resonance Imaging At 3 Tesla full books in PDF, epub, and Kindle. Read online free Quantitative Susceptibility Mapping Of Human Brain By Magnetic Resonance Imaging At 3 Tesla ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Nicole Seiberlich |
Publisher | : Academic Press |
Total Pages | : 1094 |
Release | : 2020-11-18 |
Genre | : Computers |
ISBN | : 0128170581 |
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Author | : Pierre-Marie Robitaille |
Publisher | : Springer Science & Business Media |
Total Pages | : 487 |
Release | : 2007-12-31 |
Genre | : Medical |
ISBN | : 0387496483 |
The foundation for understanding the function and dynamics of biological systems is not only knowledge of their structure, but the new methodologies and applications used to determine that structure. This volume in Biological Magnetic Resonance emphasizes the methods that involve Ultra High Field Magnetic Resonance Imaging. It will interest researchers working in the field of imaging.
Author | : Albert Abraham Michelson |
Publisher | : Courier Corporation |
Total Pages | : 228 |
Release | : 1995-01-01 |
Genre | : Science |
ISBN | : 9780486687001 |
Nobel Prize-winning physicist describes ground-breaking researches in light and optics, including famed experiment that confirmed the speed of light as a fundamental physical constant. Also, work with interferometer, measurement of light waves, astronomical applications, much more. Accessible to layman. 92 figures. 3 color illustrations. 1962 edition.
Author | : Matt A. Bernstein |
Publisher | : Elsevier |
Total Pages | : 1041 |
Release | : 2004-09-21 |
Genre | : Mathematics |
ISBN | : 0080533124 |
Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. - Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI - Provides self-contained sections for individual techniques - Can be used as a quick reference guide or as a resource for deeper study - Includes both non-mathematical and mathematical descriptions - Contains numerous figures, tables, references, and worked example problems
Author | : Robert W. Brown |
Publisher | : John Wiley & Sons |
Total Pages | : 976 |
Release | : 2014-06-23 |
Genre | : Medical |
ISBN | : 0471720852 |
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Author | : Scott H. Faro |
Publisher | : Springer Science & Business Media |
Total Pages | : 543 |
Release | : 2006-11-22 |
Genre | : Medical |
ISBN | : 0387346651 |
Functional magnetic resonance imaging (fMRI) measures quick, tiny metabolic changes that take place in the brain, providing the most sensitive method currently available for identifying, investigating, and monitoring brain tumors, stroke, and chronic disorders of the nervous system like multiple sclerosis, and brain abnormalities related to dementia or seizures. This overview explores experimental research design, outlines challenges and limitations of fMRI, provides a detailed neuroanatomic atlas, and describes clinical applications of fMRI in cognitive, sensory, motor, and pharmacological cases, translating research into clinical application.
Author | : Stefan Geyer |
Publisher | : Springer Science & Business Media |
Total Pages | : 260 |
Release | : 2013-07-04 |
Genre | : Medical |
ISBN | : 3642378242 |
Unraveling the functional properties of structural elements in the brain is one of the fundamental goals of neuroscientific research. In the cerebral cortex this is no mean feat, since cortical areas are defined microstructurally in post-mortem brains but functionally in living brains with electrophysiological or neuroimaging techniques – and cortical areas vary in their topographical properties across individual brains. Being able to map both microstructure and function in the same brains noninvasively in vivo would represent a huge leap forward. In recent years, high-field magnetic resonance imaging (MRI) technologies with spatial resolution below 0.5 mm have set the stage for this by detecting structural differences within the human cerebral cortex, beyond the Stria of Gennari. This provides the basis for an in vivo microanatomical brain map, with the enormous potential to make direct correlations between microstructure and function in living human brains. This book starts with Brodmann’s post-mortem map published in the early 20th century, moves on to the almost forgotten microstructural maps of von Economo and Koskinas and the Vogt-Vogt school, sheds some light on more recent approaches that aim at mapping cortical areas noninvasively in living human brains, and culminates with the concept of “in vivo Brodmann mapping” using high-field MRI, which was introduced in the early 21st century.
Author | : Piper M. Treuting |
Publisher | : Academic Press |
Total Pages | : 475 |
Release | : 2012 |
Genre | : Medical |
ISBN | : 0123813611 |
1. Introduction -- 2. Phenotyping -- 3. Necropsy and histology -- 4. Mammary Gland -- 5. Skeletal System -- 6. Nose, sinus, pharynx and larynx -- 7. Oral cavity and teeth -- 8. Salivary glands -- 9. Respiratory -- 10. Cardiovascular -- 11. Upper GI -- 12. Lower GI -- 13. Liver and gallbladder -- 14. Pancreas -- 15. Endocrine System -- 16. Urinary System -- 17. Female Reproductive System -- 18. Male Reproductive System -- 19. Hematopoietic and Lymphoid Tissues -- 20. Nervous System -- 21. Special senses, eye -- 22. Special senses, ear -- 23. Skin and adnexa -- Index.
Author | : Christopher M. Collins |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 82 |
Release | : 2016-03-01 |
Genre | : Medical |
ISBN | : 1681740834 |
In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.
Author | : Richard B. Buxton |
Publisher | : Cambridge University Press |
Total Pages | : 479 |
Release | : 2009-08-27 |
Genre | : Medical |
ISBN | : 1139481304 |
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.