Quantitative Mathematical Models in Radiation Biology

Quantitative Mathematical Models in Radiation Biology
Author: Jürgen Kiefer
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2012-12-06
Genre: Science
ISBN: 3642466567

Radiation is the one agent among all environmental factors which may damage biological systems that is not only easily quantifiable but can also be measured with unsurpassed resolution. Its primary effects on atoms and molecules are well understood, and the secondary processes can be followed by sophisticated experimental techniques. The quantum nature of interactions and the importance of stochastic variations call for an exact mathematical description. This task is by no means simple, and presents a challenge both to the experimentalist and to the theoretician. It is hoped that a generally acceptable formalism will help to quantify radiation responses, both in radiation protection and radiation therapy, and make it possible to move from a purely empirical approach with all its fallacies to real understanding.

Understanding Radiation Biology

Understanding Radiation Biology
Author: Kenneth Chadwick
Publisher: CRC Press
Total Pages: 248
Release: 2019-11-15
Genre: Medical
ISBN: 1000733882

This book provides a qualitative and quantitative exploration of the action of radiation on living matter which leads to a complete and coherent interpretation of radiation biology. It takes readers from radiation-induced molecular damage in the nucleus of the cell and links this damage to cellular effects such as cell killing, chromosome aberrations and mutations before exploring organ damage, organism lethality and cancer induction. It also deals with radiological protection concepts and the difficulties of predicting the dose–effect relationship for low-dose and dose rate radiation risk. The book ends with separate chapters dealing with the effects of UV light exposure and risk classification of chemical mutagens, both of which are derived by logical extensions of the radiation model. This book will provide the basic foundations of radiation biology for undergraduate and graduate students in medical physics, biomedical engineering, radiological protection, medicine, radiology and radiography. Features Presents a comprehensive insight into radiation action on living matter Contains important implications for radiological protection and regulations Provides analytical methods for applications in radiotherapy

Evolution of Ionizing Radiation Research

Evolution of Ionizing Radiation Research
Author: Mitsuru Nenoi
Publisher: BoD – Books on Demand
Total Pages: 318
Release: 2015-09-17
Genre: Science
ISBN: 9535121677

The industrial and medical applications of radiation have been augmented and scientific insight into mechanisms for radiation action notably progressed. In addition, the public concern about radiation risk has also grown extensively. Today the importance of risk communication among stakeholders involved in radiation-related issues is emphasized much more than any time in the past. Thus, the circumstances of radiation research have drastically changed, and the demand for a novel approach to radiation-related issues is increasing. It is thought that the publication of the book Evolution of Ionizing Radiation Research at this time would have enormous impacts on the society. The editor believes that technical experts would find a variety of new ideas and hints in this book that would be helpful to them to tackle ionizing radiation.

Handbook of Cancer Models with Applications

Handbook of Cancer Models with Applications
Author: W. Y. Tan
Publisher: World Scientific
Total Pages: 592
Release: 2008
Genre: Political Science
ISBN: 9812779485

Composed of contributions from an international team of leading researchers, this book pulls together the most recent research results in the field of cancer modeling to provide readers with the most advanced mathematical models of cancer and their applications.Topics included in the book cover oncogenetic trees, stochastic multistage models of carcinogenesis, effects of ionizing radiation on cell cycle and genomic instability, induction of DNA damage by ionizing radiation and its repair, epigenetic cancer models, bystander effects of radiation, multiple pathway models of human colon cancer, and stochastic models of metastasis. The book also provides some important applications of cancer models to the assessment of cancer risk associated with various hazardous environmental agents, to cancer screening by MRI, and to drug resistance in cancer chemotherapy. An updated statistical design and analysis of xenograft experiments as well as a statistical analysis of cancer occult clinical data are also provided.The book will serve as a useful source of reference for researchers in biomathematics, biostatistics and bioinformatics; for clinical investigators and medical doctors employing quantitative methods to develop procedures for cancer diagnosis, prevention, control and treatment; and for graduate students.

Mathematical Modelling in Biomedicine

Mathematical Modelling in Biomedicine
Author: Vitaly Volpert
Publisher: MDPI
Total Pages: 224
Release: 2021-01-26
Genre: Mathematics
ISBN: 3039434934

Mathematical modelling in biomedicine is a rapidly developing scientific discipline at the intersection of medicine, biology, mathematics, physics, and computer science. Its progress is stimulated by fundamental scientific questions and by the applications to public health. This book represents a collection of papers devoted to mathematical modelling of various physiological problems in normal and pathological conditions. It covers a broad range of topics including cardiovascular system and diseases, heart and brain modelling, tumor growth, viral infections, and immune response. Computational models of blood circulation are used to study the influence of heart arrhythmias on coronary blood flow and on operating modes for left-ventricle-assisted devices. Wave propagation in the cardiac tissue is investigated in order to show the influence of tissue heterogeneity and fibrosis. The models of tumor growth are used to determine optimal protocols of antiangiogenic and radiotherapy. The models of viral hepatitis kinetics are considered for the parameter identification, and the evolution of viral quasi-species is investigated. The book presents the state-of-the-art in mathematical modelling in biomedicine and opens new perspectives in this passionate field of research.

Radiation Carcinogenesis

Radiation Carcinogenesis
Author: Arthur C. Upton
Publisher: Elsevier Publishing Company
Total Pages: 498
Release: 1986
Genre: Medical
ISBN:

This book provides the first comprehensive and systematic survey of present knowledge about radiation carcinogenesis. World experts review in detail current information on such topics as the incidence of various forms of cancer in irradiated populations, the carcinogenic effects of ionizing radiation in laboratory animals, theoretical mechanisms of radiation carcinogenesis, and the implications of the data for assessing the risks of human cancer. In view of recent controversy about the carcinogenic hazards of low-level exposure to radiation and other carcinogens, this book is a timely contribution toward our understanding of the carcinogenic risks of low-level radiation.

Adaptive Radiation Therapy

Adaptive Radiation Therapy
Author: X. Allen Li
Publisher: CRC Press
Total Pages: 404
Release: 2011-01-27
Genre: Medical
ISBN: 1439816352

Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an

Basic Clinical Radiobiology

Basic Clinical Radiobiology
Author: Michael C. Joiner
Publisher: CRC Press
Total Pages: 711
Release: 2018-08-28
Genre: Medical
ISBN: 0429955391

Basic Clinical Radiobiology is a concise but comprehensive textbook setting out the essentials of the science and clinical application of radiobiology for those seeking accreditation in radiation oncology, clinical radiation physics, and radiation technology. Fully revised and updated to keep abreast of current developments in radiation biology and radiation oncology, this fifth edition continues to present in an interesting way the biological basis of radiation therapy, discussing the basic principles and significant developments that underlie the latest attempts to improve the radiotherapeutic management of cancer. This new edition is highly illustrated with attractive 2-colour presentation and now includes new chapters on stem cells, tissue response and the convergence of radiotherapy, radiobiology, and physics. It will be invaluable for FRCR (clinical oncology) and equivalent candidates, SpRs (and equivalent) in radiation oncology, practicing radiation oncologists and radiotherapists, as well as radiobiologists and radiotherapy physicists.

Introduction to Mathematical Oncology

Introduction to Mathematical Oncology
Author: Yang Kuang
Publisher: CRC Press
Total Pages: 469
Release: 2016-04-05
Genre: Mathematics
ISBN: 1584889918

Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.