Quantitative Advancements In Animal Resource Selection Studies
Download Quantitative Advancements In Animal Resource Selection Studies full books in PDF, epub, and Kindle. Read online free Quantitative Advancements In Animal Resource Selection Studies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : B.F. Manly |
Publisher | : Springer Science & Business Media |
Total Pages | : 233 |
Release | : 2007-05-08 |
Genre | : Science |
ISBN | : 0306481510 |
We have written this book as a guide to the design and analysis of field studies of resource selection, concentrating primarily on statistical aspects of the comparison of the use and availability of resources of different types. Our intended audience is field ecologists in general and, in particular, wildlife and fisheries biologists who are attempting to measure the extent to which real animal populations are selective in their choice of food and habitat. As such, we have made no attempt to address those aspects of theoretical ecology that are concerned with how animals might choose their resources if they acted in an optimal manner. The book is based on the concept of a resource selection function (RSF), where this is a function of characteristics measured on resourceunits such that its value for a unit is proportional to the probability of that unit being used. We argue that this concept leads to a unified theory for the analysis and interpretation of data on resource selection and can replace many ad hoc statistical methods that have been used in the past.
Author | : Sukanta Mondal |
Publisher | : Academic Press |
Total Pages | : 340 |
Release | : 2020-11-25 |
Genre | : Science |
ISBN | : 0128206128 |
Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion
Author | : Joshua Millspaugh |
Publisher | : Academic Press |
Total Pages | : 493 |
Release | : 2001-08-14 |
Genre | : Technology & Engineering |
ISBN | : 0080540228 |
Radio Tracking and Animal Populations is a succinct synthesis of emerging technologies and their applications to the empirical and theoretical problems of population assessment. The book is divided into sections designed to encompass the various aspects of animal ecology that may be evaluated using radiotelemetry technology - experimental design, equipment and technology, animal movement, resource selection, and demographics. Wildlife biologists at the leading edge of new developments in the technology and its application have joined forces.
Author | : Joel Ira Weller |
Publisher | : CABI |
Total Pages | : 288 |
Release | : 2009 |
Genre | : Technology & Engineering |
ISBN | : 1845937341 |
Quantitative Trait Loci (QTL) is a topic of major agricultural significance for efficient livestock production. This book covers various statistical methods that have been used or proposed for detection and analysis of QTL and marker-and gene-assisted selection in animal genetics and breeding.
Author | : Stéphane Joost |
Publisher | : Frontiers Media SA |
Total Pages | : 295 |
Release | : 2016-01-28 |
Genre | : Biodiversity |
ISBN | : 2889197352 |
The history of livestock started with the domestication of their wild ancestors: a restricted number of species allowed to be tamed and entered a symbiotic relationship with humans. In exchange for food, shelter and protection, they provided us with meat, eggs, hides, wool and draught power, thus contributing considerably to our economic and cultural development. Depending on the species, domestication took place in different areas and periods. After domestication, livestock spread over all inhabited regions of the earth, accompanying human migrations and becoming also trade objects. This required an adaptation to different climates and varying styles of husbandry and resulted in an enormous phenotypic diversity. Approximately 200 years ago, the situation started to change with the rise of the concept of breed. Animals were selected for the same visible characteristics, and crossing with different phenotypes was reduced. This resulted in the formation of different breeds, mostly genetically isolated from other populations. A few decades ago, selection pressure was increased again with intensive production focusing on a limited range of types and a subsequent loss of genetic diversity. For short-term economic reasons, farmers have abandoned traditional breeds. As a consequence, during the 20th century, at least 28% of farm animal breeds became extinct, rare or endangered. The situation is alarming in developing countries, where native breeds adapted to local environments and diseases are being replaced by industrial breeds. In the most marginal areas, farm animals are considered to be essential for viable land use and, in the developing world, a major pathway out of poverty. Historic documentation from the period before the breed formation is scarce. Thus, reconstruction of the history of livestock populations depends on archaeological, archeo-zoological and DNA analysis of extant populations. Scientific research into genetic diversity takes advantage of the rapid advances in molecular genetics. Studies of mitochondrial DNA, microsatellite DNA profiling and Y-chromosomes have revealed details on the process of domestication, on the diversity retained by breeds and on relationships between breeds. However, we only see a small part of the genetic information and the advent of new technologies is most timely in order to answer many essential questions. High-throughput single-nucleotide polymorphism genotyping is about to be available for all major farm animal species. The recent development of sequencing techniques calls for new methods of data management and analysis and for new ideas for the extraction of information. To make sense of this information in practical conditions, integration of geo-environmental and socio-economic data are key elements. The study and management of farm animal genomic resources (FAnGR) is indeed a major multidisciplinary issue. The goal of the present Research Topic was to collect contributions of high scientific quality relevant to biodiversity management, and applying new methods to either new genomic and bioinformatics approaches for characterization of FAnGR, to the development of FAnGR conservation methods applied ex-situ and in-situ, to socio-economic aspects of FAnGR conservation, to transfer of lessons between wildlife and livestock biodiversity conservation, and to the contribution of FAnGR to a transition in agriculture (FAnGR and agro-ecology).
Author | : Missouri Cooperative Fish and Wildlife Unit |
Publisher | : |
Total Pages | : 74 |
Release | : 2002 |
Genre | : Fisheries |
ISBN | : |
Author | : Hasan Khatib |
Publisher | : John Wiley & Sons |
Total Pages | : 336 |
Release | : 2015-03-02 |
Genre | : Science |
ISBN | : 1118677404 |
Animal genetics is a foundational discipline in the fields of animal science, animal breeding, and veterinary sciences. While genetics underpins the healthy development and breeding of all living organisms, this is especially true in domestic animals, specifically with respect to breeding for key traits. Molecular and Quantitative Animal Genetics is a new textbook that takes an innovative approach, looking at both quantitative and molecular breeding approaches. The bookprovides a comprehensive introduction to genetic principles and their applications in animal breeding. This text provides a useful overview for those new to the field of animal genetics and breeding, covering a diverse array of topics ranging from population and quantitative genetics to epigenetics and biotechnology. Molecular and Quantitative Animal Genetics will be an important and invaluable educational resource for undergraduate and graduate students and animal agriculture professionals. Divided into six sections pairing fundamental principles with useful applications, the book's comprehensive coverage will make it an ideal fit for students studying animal breeding and genetics at any level.
Author | : Anne Charmantier |
Publisher | : Oxford University Press |
Total Pages | : 293 |
Release | : 2014 |
Genre | : Medical |
ISBN | : 019967423X |
This book gathers the expertise of 30 evolutionary biologists from around the globe to highlight how applying the field of quantitative genetics - the analysis of the genetic basis of complex traits - aids in the study of wild populations.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 264 |
Release | : 2015-03-31 |
Genre | : Science |
ISBN | : 0309316472 |
By 2050 the world's population is projected to grow by one-third, reaching between 9 and 10 billion. With globalization and expected growth in global affluence, a substantial increase in per capita meat, dairy, and fish consumption is also anticipated. The demand for calories from animal products will nearly double, highlighting the critical importance of the world's animal agriculture system. Meeting the nutritional needs of this population and its demand for animal products will require a significant investment of resources as well as policy changes that are supportive of agricultural production. Ensuring sustainable agricultural growth will be essential to addressing this global challenge to food security. Critical Role of Animal Science Research in Food Security and Sustainability identifies areas of research and development, technology, and resource needs for research in the field of animal agriculture, both nationally and internationally. This report assesses the global demand for products of animal origin in 2050 within the framework of ensuring global food security; evaluates how climate change and natural resource constraints may impact the ability to meet future global demand for animal products in sustainable production systems; and identifies factors that may impact the ability of the United States to meet demand for animal products, including the need for trained human capital, product safety and quality, and effective communication and adoption of new knowledge, information, and technologies. The agricultural sector worldwide faces numerous daunting challenges that will require innovations, new technologies, and new ways of approaching agriculture if the food, feed, and fiber needs of the global population are to be met. The recommendations of Critical Role of Animal Science Research in Food Security and Sustainability will inform a new roadmap for animal science research to meet the challenges of sustainable animal production in the 21st century.
Author | : Leonard A. Brennan |
Publisher | : Johns Hopkins University Press |
Total Pages | : 345 |
Release | : 2019-09-10 |
Genre | : Science |
ISBN | : 1421431076 |
An authoritative guide to quantitative methods that will help wildlife scientists improve analysis and decision-making. Over the past fifty years, wildlife science has become increasingly quantitative. But to wildlife scientists, many of whom have not been formally trained as biometricians, computer modelers, or mathematicians, the wide array of available techniques for analyzing wildlife populations and habitats can be overwhelming. This practical book aims to help students and professionals alike understand how to use quantitative methods to inform their work in the field. Covering the most widely used contemporary approaches to the analysis of wildlife populations and habitats, Quantitative Analyses in Wildlife Science is divided into five broad areas: • general statistical methods • demographic estimation • dynamic process modeling • analysis of spatially based data on animals and resources • numerical methods Addressing a variety of topics, from population estimation and growth trend predictions to the study of migration patterns, this book presents fresh data on such pressing issues as sustainable take, control of invasives, and species reintroduction. Authored by leading researchers in wildlife science, each chapter considers the structure of data in relation to a particular analytical technique, as well as the structure of variation in those data. Providing conceptual and quantitative overviews of modern analytical methods, the techniques covered in this book also apply to conservation research and wildlife policy. Whether a quick refresher or a comprehensive introduction is called for, Quantitative Analyses in Wildlife Science is an indispensable addition to every wildlife professional's bookshelf. Contributors: William M. Block, Leonard A. Brennan, Stephen T. Buckland, Christopher C. Chizinski, Evan C. Cooch, Raymond J. Davis, Stephen J. DeMaso, Randy W. DeYoung, Jane Elith, Joseph J. Fontane, Julie A. Heinrichs, Mevin B. Hooten, Julianna M. A. Jenkins, Zachary S. Laden, Damon B. Lesmeister, Daniel Linden, Jeffrey J. Lusk, Bruce G. Marcot, David L. Miller, Michael L. Morrison, Eric Rexstad, Jamie S. Sanderlin, Joseph P. Sands, Erica F. Stuber, Chris Sutherland, Andrew N. Tri, David B. Wester, Gary C. White, Christopher K. Williams, Damon L. Williford