Purinergic Signaling in Neurodevelopment, Neuroinflammation and Neurodegeneration

Purinergic Signaling in Neurodevelopment, Neuroinflammation and Neurodegeneration
Author: Henning Ulrich
Publisher: Springer Nature
Total Pages: 381
Release: 2023-07-16
Genre: Medical
ISBN: 3031269454

This volume explores the quickly evolving field of Purinergic signaling, and examines how receptors for ATP and other nucleotides, and receptors for adenosine, act in neuronal transmission, control of synaptic activity, proliferation, differentiation and cell death regulation in the CNS. This book focuses on the participation of purinergic receptors and ectonucleotidases, degrading ATP into adenosine, in embryonic and adult neurogenesis in vitro and in vivo as well as in synaptic transmission and pathophysiology. Further, the chapters discuss varying brain diseases, including Parkinson’s, and Alzheimer’s disease, autism, mood disorders and epilepsy, as well as brain tumors, in the context of purinergic signaling and its clinical aspects. The development of purinergic receptor agonists is also an important issue of this book. This book provides a critical review of the current state of science and will be useful for both scientists and students who are or would like to get involved in this area. Furthermore, this book addresses neuroscientists, physician and professionals from the industry, who would like to update themselves in this exciting and rapidly growing field of neuroscience.

Purinergic Signaling in Neuroinflammation

Purinergic Signaling in Neuroinflammation
Author: Dmitry Aminin
Publisher: Mdpi AG
Total Pages: 0
Release: 2023-05-18
Genre: Science
ISBN: 9783036576879

It is currently apparent that extracellular ATP's physiological effect is mediated by its interaction with specific purinergic receptors. All purinergic receptors are divided into P1-purinoreceptors and P2-purinoreceptors. Each of the subtypes is divided into a number of families. For instance, P2 receptors are divided into P2X and P2Y receptors according to the mechanism by which their effect is realized: P2Y are G-protein-coupled receptors, while P2X receptors are ligand-operated ion channels. P2X receptors are important molecular therapeutic targets, the malfunctioning of which leads to severe complications in the physiology of humans and animals and causes dangerous diseases. The search for compounds that can modulate the function of purinergic receptors can lead to the creation of new drugs that are effective in central and peripheral nervous system and immune system disease treatment, including neuroinflammation, hypoxia/ischemia, epilepsy and neuropathic pain. In this Special Issue, we wish to offer a platform for high-quality publications on the latest advances in the identification of P2X/Y- and P1-receptor blockers, functions and regulation by them; the characterization of these receptor signaling networks and crosstalk; mechanisms underlying the role of purinoceptors in neurodegenerative illnesses as well as chronic neuronal changes following acute noxious damage and therapeutic opportunities associated with regulation of purinergic receptor activity.

Purinergic Signaling in Neuroinflammation

Purinergic Signaling in Neuroinflammation
Author: Dmitry Aminin
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN: 9783036576862

It is currently apparent that extracellular ATP's physiological effect is mediated by its interaction with specific purinergic receptors. All purinergic receptors are divided into P1-purinoreceptors and P2-purinoreceptors. Each of the subtypes is divided into a number of families. For instance, P2 receptors are divided into P2X and P2Y receptors according to the mechanism by which their effect is realized: P2Y are G-protein-coupled receptors, while P2X receptors are ligand-operated ion channels. P2X receptors are important molecular therapeutic targets, the malfunctioning of which leads to severe complications in the physiology of humans and animals and causes dangerous diseases. The search for compounds that can modulate the function of purinergic receptors can lead to the creation of new drugs that are effective in central and peripheral nervous system and immune system disease treatment, including neuroinflammation, hypoxia/ischemia, epilepsy and neuropathic pain. In this Special Issue, we wish to offer a platform for high-quality publications on the latest advances in the identification of P2X/Y- and P1-receptor blockers, functions and regulation by them; the characterization of these receptor signaling networks and crosstalk; mechanisms underlying the role of purinoceptors in neurodegenerative illnesses as well as chronic neuronal changes following acute noxious damage and therapeutic opportunities associated with regulation of purinergic receptor activity.

Purinergic Signalling and the Nervous System

Purinergic Signalling and the Nervous System
Author: Geoffrey Burnstock
Publisher: Springer Science & Business Media
Total Pages: 724
Release: 2012-06-05
Genre: Medical
ISBN: 3642288634

In the first 20 years that followed the purinergic signalling hypothesis in 1972, most scientists were sceptical about its validity, largely because ATP was so well established as an intracellular molecule involved in cell biochemistry and it seemed unlikely that such a ubiquitous molecule would act as an extracellular signalling molecule. However, after the receptors for ATP and adenosine were cloned and characterized in the early 1990s and ATP was established as a synaptic transmitter in the brain and sympathetic ganglia, the tide turned. More recently it has become clear that ATP is involved in long-term (trophic) signalling in cell proliferation, differentiation and death, in development and regeneration, as well as in short-term signalling in neurotransmission and secretion. Also, important papers have been published showing the molecular structure of P2X receptors in primitive animals like Amoeba and Schistosoma, as well as green algae. This has led to the recognition of the widespread nature of the purinergic signalling system in most cell types and to a rapid expansion of the field, including studies of the pathophysiology as well as physiology and exploration of the therapeutic potential of purinergic agents. In two books, Geoffrey Burnstock and Alexej Verkhratsky have aimed at drawing together the massive and diverse body of literature on purinergic signalling. The topic of this first book is purinergic signalling in the peripheral and central nervous systems and in the individual senses. In a second book the authors focus on purinergic signalling in non-excitable cells, including those of the airways, kidney, pancreas, endocrine glands and blood vessels. Diseases related to these systems are also considered.

Homeostatic Control of Brain Function

Homeostatic Control of Brain Function
Author: Detlev Boison
Publisher: Oxford University Press
Total Pages: 657
Release: 2016
Genre: Medical
ISBN: 0199322295

Homeostatic Control of Brain Function offers a broad view of brain health and diverse perspectives for potential treatments, targeting key areas such as mitochondria, the immune system, epigenetic changes, and regulatory molecules such as ions, neuropeptides, and neuromodulators. Loss of homeostasis becomes expressed as a diverse array of neurological disorders. Each disorder has multiple comorbidities - with some crossing over several conditions - and often disease-specific treatments remain elusive. When current pharmacological therapies result in ineffective and inadequate outcomes, therapies to restore and maintain homeostatic functions can help improve brain health, no matter the diagnosis. Employing homeostatic therapies may lead to future cures or treatments that address multiple comorbidities. In an age where brain diseases such as Alzheimer's or Parkinson's are ever present, the incorporation of homeostatic techniques could successfully promote better overall brain health. Key Features include · A focus on the homeostatic controls that significantly depend on the way one lives, eats, and drinks. · Highlights from emerging research in non-pharmaceutical therapies including botanical medications, meditation, diet, and exercise. · Incorporation of homeostatic therapies into existing basic and clinical research paradigms. · Extensive scientific basic and clinical research ranging from molecules to disorders. · Emerging practical information for improving homeostasis. · Examples of homeostatic therapies in preventing and delaying dysfunction. Both editors, Detlev Boison and Susan Masino, bring their unique expertise in homeostatic research to the overall scope of this work. This book is accessible to all with an interest in brain health; scientist, clinician, student, and lay reader alike.

Astrocytes in (Patho)Physiology of the Nervous System

Astrocytes in (Patho)Physiology of the Nervous System
Author: Vladimir Parpura
Publisher: Springer Science & Business Media
Total Pages: 701
Release: 2008-12-11
Genre: Medical
ISBN: 0387794921

Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some ast- cytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as active participants in intercellular communication and information processing in the central nervous system, in part due to their lack of electrical excitability. The follow up chapters review the “nuts and bolts” of ast- cytic physiology; astrocytes possess a diverse assortment of ion channels, neu- transmitter receptors, and transport mechanisms that enable the astrocytes to respond to many of the same signals that act on neurons. Since astrocytes can detect chemical transmitters that are released from neurons and can release their own extracellular signals there is an increasing awareness that they play physiological roles in regulating neuronal activity and synaptic transmission. In addition to these physiological roles, it is becoming increasingly recognized that astrocytes play critical roles during pathophysiological states of the nervous system; these states include gliomas, Alexander disease, and epilepsy to mention a few.

Perinatal Neuropathology

Perinatal Neuropathology
Author: Mirna Lechpammer
Publisher:
Total Pages:
Release: 2021
Genre: Nervous system
ISBN: 9781316671863

"1 Clinical history, clinical correlations with placental pathology and prematurity The initial steps in the process of perinatal nervous system evaluation, namely the planning of the optimal approach and choice of samples to be obtained, are driven by the clinical context. Of key importance are the following data: a. Gestational age at time of demise (if stillborn); or gestational age and postnatal age (if liveborn), for comparison with normative standards of development (see Appendix); b. State of maternal health (age, parity, pre-existing medical conditions or ones appearing during gestation or around the time of delivery, exposure to medications/toxins/infections), and of health of siblings or other family members: - Concerns for inherited (i.e., genetic) conditions, metabolic disorders, congenital infections, etc., may indicate the need for special testing; c. Details of prenatal course, including any imaging, amniocentesis, or monitoring: - Prenatal imaging modalities most commonly consist of transabdominal ultrasonography, generally done at the time of the first prenatal visit (to confirm pregnancy) or more usually in the mid-second-trimester for detection of fetal or placental anomalies"--

Development of the Cerebellum from Molecular Aspects to Diseases

Development of the Cerebellum from Molecular Aspects to Diseases
Author: Hassan Marzban
Publisher: Springer
Total Pages: 502
Release: 2017-07-27
Genre: Medical
ISBN: 3319597493

The authors present the most current and cutting-edge knowledge regarding the molecular basis of cerebellar development, focusing on information relevant to laboratory scientists and clinicians providing service to patients with cerebellar disorders. Knowledge obtained from advanced neuroimaging techniques that are used during development, and from molecular- and genetic-based studies has provided rapidly-growing evidence that the cerebellum is a brain region that is highly impacted by developmental defects. Cerebellar defects result in significant intellectual and motor function impairment that affects both the patients and their families.