Pseudo-Differential Equations And Stochastics Over Non-Archimedean Fields

Pseudo-Differential Equations And Stochastics Over Non-Archimedean Fields
Author: Anatoly Kochubei
Publisher: CRC Press
Total Pages: 344
Release: 2001-08-03
Genre: Mathematics
ISBN: 9780203908167

Provides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equat

Pseudo-Differential Equations And Stochastics Over Non-Archimedean Fields

Pseudo-Differential Equations And Stochastics Over Non-Archimedean Fields
Author: Anatoly Kochubei
Publisher: CRC Press
Total Pages: 337
Release: 2001-08-03
Genre: Mathematics
ISBN: 0203908163

Provides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equat

Pseudodifferential Equations Over Non-Archimedean Spaces

Pseudodifferential Equations Over Non-Archimedean Spaces
Author: W. A. Zúñiga-Galindo
Publisher: Springer
Total Pages: 186
Release: 2017-01-08
Genre: Mathematics
ISBN: 3319467387

Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applications of p-adic wavelets.

Ultrametric Pseudodifferential Equations and Applications

Ultrametric Pseudodifferential Equations and Applications
Author: Andrei Yu. Khrennikov
Publisher: Cambridge University Press
Total Pages: 255
Release: 2018-04-26
Genre: Mathematics
ISBN: 1108100104

Starting from physical motivations and leading to practical applications, this book provides an interdisciplinary perspective on the cutting edge of ultrametric pseudodifferential equations. It shows the ways in which these equations link different fields including mathematics, engineering, and geophysics. In particular, the authors provide a detailed explanation of the geophysical applications of p-adic diffusion equations, useful when modeling the flows of liquids through porous rock. p-adic wavelets theory and p-adic pseudodifferential equations are also presented, along with their connections to mathematical physics, representation theory, the physics of disordered systems, probability, number theory, and p-adic dynamical systems. Material that was previously spread across many articles in journals of many different fields is brought together here, including recent work on the van der Put series technique. This book provides an excellent snapshot of the fascinating field of ultrametric pseudodifferential equations, including their emerging applications and currently unsolved problems.

Pseudodifferential Operators and Wavelets over Real and p-adic Fields

Pseudodifferential Operators and Wavelets over Real and p-adic Fields
Author: Nguyen Minh Chuong
Publisher: Springer
Total Pages: 373
Release: 2018-11-28
Genre: Mathematics
ISBN: 3319774735

This monograph offers a self-contained introduction to pseudodifferential operators and wavelets over real and p-adic fields. Aimed at graduate students and researchers interested in harmonic analysis over local fields, the topics covered in this book include pseudodifferential operators of principal type and of variable order, semilinear degenerate pseudodifferential boundary value problems (BVPs), non-classical pseudodifferential BVPs, wavelets and Hardy spaces, wavelet integral operators, and wavelet solutions to Cauchy problems over the real field and the p-adic field.

Frames and Operator Theory in Analysis and Signal Processing

Frames and Operator Theory in Analysis and Signal Processing
Author: David R. Larson
Publisher: American Mathematical Soc.
Total Pages: 306
Release: 2008
Genre: Mathematics
ISBN: 0821841440

This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006.

Advances in Non-Archimedean Analysis and Applications

Advances in Non-Archimedean Analysis and Applications
Author: W. A. Zúñiga-Galindo
Publisher: Springer Nature
Total Pages: 326
Release: 2021-12-02
Genre: Mathematics
ISBN: 3030819760

This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role – a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems – for instance, proteins – asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.

Advances in Non-Archimedean Analysis

Advances in Non-Archimedean Analysis
Author: Helge Glöckner
Publisher: American Mathematical Soc.
Total Pages: 346
Release: 2016-05-20
Genre: Mathematics
ISBN: 1470419882

This volume contains the Proceedings of the 13th International Conference on p-adic Functional Analysis, held from August 12–16, 2014, at the University of Paderborn, Paderborn, Germany. The articles included in this book feature recent developments in various areas of non-Archimedean analysis, non-Archimedean functional analysis, representation theory, number theory, non-Archimedean dynamical systems and applications. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.

Stochastic versus Deterministic Systems of Differential Equations

Stochastic versus Deterministic Systems of Differential Equations
Author: G. S. Ladde
Publisher: CRC Press
Total Pages: 352
Release: 2003-12-05
Genre: Mathematics
ISBN: 9780203027028

This peerless reference/text unfurls a unified and systematic study of the two types of mathematical models of dynamic processes-stochastic and deterministic-as placed in the context of systems of stochastic differential equations. Using the tools of variational comparison, generalized variation of constants, and probability distribution as its met

Non-Archimedean Linear Operators and Applications

Non-Archimedean Linear Operators and Applications
Author: Toka Diagana
Publisher: Nova Publishers
Total Pages: 110
Release: 2007
Genre: Mathematics
ISBN: 9781600214059

This self-contained book provides the reader with a comprehensive presentation of recent investigations on operator theory over non-Archimedean Banach and Hilbert spaces. This includes, non-Archimedean valued fields, bounded and unbounded linear operators, bilinear forms, functions of linear operators and one-parameter families of bounded linear operators on free branch spaces.