Emmy Noether 1882–1935

Emmy Noether 1882–1935
Author: DICK
Publisher: Springer Science & Business Media
Total Pages: 213
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468405357

N 1964 at the World's Fair in New York I City one room was dedicated solely to mathematics. The display included a very at tractive and informative mural, about 13 feet long, sponsored by one of the largest com puter manufacturing companies and present ing a brief survey of the history of mathemat ics. Entitled, "Men of Modern Mathematics," it gives an outline of the development of that science from approximately 1000 B. C. to the year of the exhibition. The first centuries of this time span are illustrated by pictures from the history of art and, in particular, architec ture; the period since 1500 is illuminated by portraits of mathematicians, including brief descriptions of their lives and professional achievements. Close to eighty portraits are crowded into a space of about fourteen square feet; among them, only one is of a woman. Her face-mature, intelligent, neither pretty nor handsome-may suggest her love of sci- 1 Emmy Noether ence and creative gift, but certainly reveals a likeable personality and a genuine kindness of heart. It is the portrait of Emmy Noether ( 1882 - 1935), surrounded by the likenesses of such famous men as Joseph Liouville (1809-1882), Georg Cantor (1845-1918), and David Hilbert (1862 -1943). It is accom panied by the following text: Emmy Noether, daughter of the mathemati cian Max, was often called "Der Noether," as if she were a man.

Max Ernst

Max Ernst
Author: Max Ernst
Publisher:
Total Pages: 72
Release: 1979
Genre: Art
ISBN:

An Introduction to Symplectic Geometry

An Introduction to Symplectic Geometry
Author: Rolf Berndt
Publisher: American Mathematical Soc.
Total Pages: 226
Release: 2001
Genre: Mathematics
ISBN: 9780821820568

Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

Elliptic Partial Differential Equations

Elliptic Partial Differential Equations
Author: Qing Han
Publisher: American Mathematical Soc.
Total Pages: 161
Release: 2011
Genre: Mathematics
ISBN: 0821853139

This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.

Coomassie and Magdala

Coomassie and Magdala
Author: Henry Morton Stanley
Publisher:
Total Pages: 430
Release: 1874
Genre: Abyssinian Expedition
ISBN:

Comprises accounts of Wolseley's occupation of Ashanti capital, Kumasi, Ghana, and terms with King Kofi Karikari, 1873-1874; and of Napier's occupation of Magdala, Ethiopia, to secure release of British captives from Negus Theodore II, 1867-1868.

The Lost Boys of Zeta Psi

The Lost Boys of Zeta Psi
Author: Laurie A. Wilkie
Publisher: Univ of California Press
Total Pages: 360
Release: 2010-04-02
Genre: Social Science
ISBN: 0520945948

The Lost Boys of Zeta Psi takes us inside the secret, amusing, and sometimes mundane world of a California fraternity around 1900. Gleaning history from recent archaeological excavations and from such intriguing sources as oral histories, architecture, and photographs, Laurie A. Wilkie uncovers details of everyday life in the first fraternity at the University of California, Berkeley, and sets this story into the rich social and historical context of West Coast America at the turn of the last century. In particular, Wilkie examines men’s coming-of-age experiences in a period when gender roles and relations were undergoing dramatic changes. Her innovative study illuminates shifting notions of masculinity and at the same time reveals new insights about the inner workings of fraternal orders and their role in American society.

Polynomial Automorphisms

Polynomial Automorphisms
Author: Arnoldus Richardus Petrus van den Essen
Publisher: Springer Science & Business Media
Total Pages: 360
Release: 2000
Genre: Automorphisms
ISBN: 9783764363505

The Mathematics of Soap Films

The Mathematics of Soap Films
Author: John Oprea
Publisher: American Mathematical Soc.
Total Pages: 284
Release:
Genre: Mathematics
ISBN: 9780821884461

Nature tries to minimize the surface area of a soap film through the action of surface tension. The process can be understood mathematically by using differential geometry, complex analysis, and the calculus of variations. This book employs ingredients from each of these subjects to tell the mathematical story of soap films. The text is fully self-contained, bringing together a mixture of types of mathematics along with a bit of the physics that underlies the subject. The development is primarily from first principles, requiring no advanced background material from either mathematics or physics. Through the Maple applications, the reader is given tools for creating the shapes that are being studied. Thus, you can "see" a fluid rising up an inclined plane, create minimal surfaces from complex variables data, and investigate the "true" shape of a balloon. Oprea also includes descriptions of experiments and photographs that let you see real soap films on wire frames. The theory of minimal surfaces is a beautiful subject, which naturally introduces the reader to fascinating, yet accessible, topics in mathematics. Oprea's presentation is rich with examples, explanations, and applications. It would make an excellent text for a senior seminar or for independent study by upper-division mathematics or science majors.