Measurement of the Inclusive Jet Cross Section with the ATLAS Detector at the Large Hadron Collider

Measurement of the Inclusive Jet Cross Section with the ATLAS Detector at the Large Hadron Collider
Author: Caterina Doglioni
Publisher: Springer Science & Business Media
Total Pages: 167
Release: 2012-07-28
Genre: Science
ISBN: 3642305385

Tests of the current understanding of physics at the highest energies achievable in man-made experiments are performed at CERN’s Large Hadron Collider. In the theory of the strong force within the Standard Model of particle physics - Quantum ChromoDynamics or QCD - confined quarks and gluons from the proton-proton scattering manifest themselves as groups of collimated particles. These particles are clustered into physically measurable objects called hadronic jets. As jets are widely produced at hadron colliders, they are the key physics objects for an early "rediscovery of QCD". This thesis presents the first jet measurement from the ATLAS Collaboration at the LHC and confronts the experimental challenges of precision measurements. Inclusive jet cross section data are then used to improve the knowledge of the momentum distribution of quarks and gluons within the proton and of the magnitude of the strong force.

Looking Inside Jets

Looking Inside Jets
Author: Simone Marzani
Publisher: Springer
Total Pages: 210
Release: 2019-05-11
Genre: Science
ISBN: 3030157091

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.

Computer Simulation Validation

Computer Simulation Validation
Author: Claus Beisbart
Publisher: Springer
Total Pages: 1056
Release: 2019-04-09
Genre: Computers
ISBN: 3319707663

This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.

Hadron Collider Physics 2005

Hadron Collider Physics 2005
Author: Mario Campanelli
Publisher: Springer Science & Business Media
Total Pages: 360
Release: 2007-08-17
Genre: Science
ISBN: 3540328416

This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.

Jet Quenching in Relativistic Heavy Ion Collisions at the LHC

Jet Quenching in Relativistic Heavy Ion Collisions at the LHC
Author: Aaron Angerami
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2013-12-02
Genre: Science
ISBN: 3319012193

This thesis presents the first measurements of jets in relativistic heavy ion collisions as reported by the ATLAS Collaboration. These include the first direct observation of jet quenching through the observation of a centrality-dependent dijet asymmetry. Also, a series of jet suppression measurements are presented, which provide quantitative constraints on theoretical models of jet quenching. These results follow a detailed introduction to heavy ion physics with emphasis on the phenomenon of jet quenching and a comprehensive description of the ATLAS detector and its capabilities with regard to performing these measurements.

The Large Hadron Collider

The Large Hadron Collider
Author: Lyndon R. Evans
Publisher: EPFL Press
Total Pages: 264
Release: 2009-01-01
Genre: Hadron colliders
ISBN: 9782940222346

Describes the technology and engineering of the Large Hadron collider (LHC), one of the greatest scientific marvels of this young 21st century. This book traces the feat of its construction, written by the head scientists involved, placed into the context of the scientific goals and principles.

Inside Cern's Large Hadron Collider: From The Proton To The Higgs Boson

Inside Cern's Large Hadron Collider: From The Proton To The Higgs Boson
Author: Mario Campanelli
Publisher: World Scientific
Total Pages: 113
Release: 2015-09-16
Genre: Science
ISBN: 9814656674

The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.

Particle Physics Reference Library

Particle Physics Reference Library
Author: Herwig Schopper
Publisher: Springer Nature
Total Pages: 632
Release: 2020
Genre: Heavy ions
ISBN: 3030382079

This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access

New Trends in Statistical Physics of Complex Systems

New Trends in Statistical Physics of Complex Systems
Author: Antonio M. Scarfone
Publisher: MDPI
Total Pages: 203
Release: 2019-01-28
Genre: Mathematics
ISBN: 3038974692

This book is a printed edition of the Special Issue "New Trends in Statistical Physics of Complex Systems" that was published in Entropy