Properties of Global Attractors of Partial Differential Equations
Author | : Anatoliĭ Vladimirovich Babin |
Publisher | : American Mathematical Soc. |
Total Pages | : 184 |
Release | : 1992 |
Genre | : Attractors (Mathematics) |
ISBN | : 9780821841099 |
Download Properties Of Global Attractors Of Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Properties Of Global Attractors Of Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anatoliĭ Vladimirovich Babin |
Publisher | : American Mathematical Soc. |
Total Pages | : 184 |
Release | : 1992 |
Genre | : Attractors (Mathematics) |
ISBN | : 9780821841099 |
Author | : Vladimir V. Chepyzhov |
Publisher | : American Mathematical Soc. |
Total Pages | : 377 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 0821829505 |
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.
Author | : James C. Robinson |
Publisher | : Cambridge University Press |
Total Pages | : 488 |
Release | : 2001-04-23 |
Genre | : Mathematics |
ISBN | : 9780521632041 |
This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.
Author | : Anatoliĭ Vladimirovich Babin |
Publisher | : |
Total Pages | : 174 |
Release | : 2019 |
Genre | : Differentiable dynamical systems |
ISBN | : 9787560375458 |
Author | : Jan W. Cholewa |
Publisher | : Cambridge University Press |
Total Pages | : 252 |
Release | : 2000-08-31 |
Genre | : Mathematics |
ISBN | : 0521794242 |
This book investigates the asymptotic behaviour of dynamical systems corresponding to parabolic equations.
Author | : David N. Cheban |
Publisher | : World Scientific |
Total Pages | : 524 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9812563083 |
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.
Author | : B. Fiedler |
Publisher | : Gulf Professional Publishing |
Total Pages | : 1099 |
Release | : 2002-02-21 |
Genre | : Science |
ISBN | : 0080532845 |
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
Author | : A. Katok |
Publisher | : Elsevier |
Total Pages | : 1235 |
Release | : 2005-12-17 |
Genre | : Mathematics |
ISBN | : 0080478220 |
This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.
Author | : Andrew Comech |
Publisher | : Springer Nature |
Total Pages | : 334 |
Release | : 2023-11-15 |
Genre | : Mathematics |
ISBN | : 303133681X |
Mark Vishik was one of the prominent figures in the theory of partial differential equations. His ground-breaking contributions were instrumental in integrating the methods of functional analysis into this theory. The book is based on the memoirs of his friends and students, as well as on the recollections of Mark Vishik himself, and contains a detailed description of his biography: childhood in Lwów, his connections with the famous Lwów school of Stefan Banach, a difficult several year long journey from Lwów to Tbilisi after the Nazi assault in June 1941, going to Moscow and forming his own school of differential equations, whose central role was played by the famous Vishik Seminar at the Department of Mechanics and Mathematics at Moscow State University. The reader is introduced to a number of remarkable scientists whose lives intersected with Vishik’s, including S. Banach, J. Schauder, I. N. Vekua, N. I. Muskhelishvili, L. A. Lyusternik, I. G. Petrovskii, S. L. Sobolev, I. M. Gelfand, M. G. Krein, A. N. Kolmogorov, N. I. Akhiezer, J. Leray, J.-L. Lions, L. Schwartz, L. Nirenberg, and many others. The book also provides a detailed description of the main research directions of Mark Vishik written by his students and colleagues, as well as several reviews of the recent development in these directions.
Author | : S. Friedlander |
Publisher | : Gulf Professional Publishing |
Total Pages | : 627 |
Release | : 2003-03-27 |
Genre | : Science |
ISBN | : 008053354X |
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.