Proper Maps Of Toposes
Download Proper Maps Of Toposes full books in PDF, epub, and Kindle. Read online free Proper Maps Of Toposes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ieke Moerdijk |
Publisher | : American Mathematical Soc. |
Total Pages | : 125 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821821687 |
We develop the theory of compactness of maps between toposes, together with associated notions of separatedness. This theory is built around two versions of "propriety" for topos maps, introduced here in a parallel fashion. The first, giving what we simply call "proper" maps, is a relatively weak condition due to Johnstone. The second kind of proper maps, here called "tidy", satisfy a stronger condition due to Tierney and Lindgren. Various forms of the Beck-Chevalley condition for (lax) fibered product squares of toposes play a central role in the development of the theory. Applications include a version of the Reeb stability theorem for toposes, a characterization of hyperconnected Hausdorff toposes as classifying toposes of compact groups, and of strongly Hausdorff coherent toposes as classifiying toposes of profinite groupoids. Our results also enable us to develop further particular aspects of the factorization theory of geometric morphisms studied by Johnstone. Our final application is a (so-called lax) descent theorem for tidy maps between toposes. This theorem implies the lax descent theorem for coherent toposes, conjectured by Makkai and proved earlier by Zawadowski.
Author | : P.T. Johnstone |
Publisher | : Courier Corporation |
Total Pages | : 401 |
Release | : 2014-01-15 |
Genre | : Mathematics |
ISBN | : 0486493369 |
Focusing on topos theory's integration of geometric and logical ideas into the foundations of mathematics and theoretical computer science, this volume explores internal category theory, topologies and sheaves, geometric morphisms, and other subjects. 1977 edition.
Author | : Jacob Lurie |
Publisher | : Princeton University Press |
Total Pages | : 944 |
Release | : 2009-07-26 |
Genre | : Mathematics |
ISBN | : 0691140480 |
In 'Higher Topos Theory', Jacob Lurie presents the foundations of this theory using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
Author | : P. T. Johnstone |
Publisher | : Oxford University Press |
Total Pages | : 836 |
Release | : 2002-09-12 |
Genre | : Computers |
ISBN | : 9780198515982 |
Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.
Author | : Marta Bunge |
Publisher | : Springer |
Total Pages | : 229 |
Release | : 2007-01-19 |
Genre | : Mathematics |
ISBN | : 3540363602 |
This volume presents a self-contained theory of certain singular coverings of toposes, including branched coverings. This book is distinguished from classical treatments of the subject by its unexpected connection with a topic from functional analysis, namely, distributions. Although primarily aimed at topos theorists, this book may also be used as a textbook for advanced graduate courses introducing topos theory with an emphasis on geometric applications.
Author | : Ieke Moerdijk |
Publisher | : American Mathematical Soc. |
Total Pages | : 132 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821864272 |
We develop the theory of compactness of maps between toposes, together with associated notions of separatedness. This theory is built around two versions of "propriety" for topos maps, introduced here in a parallel fashion. The first, giving what we simply call "proper" maps, is a relatively weak condition due to Johnstone. The second kind of proper maps, here called "tidy", satisfy a stronger condition due to Tierney and Lindgren. Various forms of the Beck-Chevalley condition for (lax) fibered product squares of toposes play a central role in the development of the theory. Applications include a version of the Reeb stability theorem for toposes, a characterization of hyperconnected Hausdorff toposes as classifying toposes of compact groups, and of strongly Hausdorff coherent toposes as classifiying toposes of profinite groupoids. Our results also enable us to develop further particular aspects of the factorization theory of geometric morphisms studied by Johnstone. Our final application is a (so-called lax) descent theorem for tidy maps between toposes. This theorem implies the lax descent theorem for coherent toposes, conjectured by Makkai and proved earlier by Zawadowski.
Author | : Robert Goldblatt |
Publisher | : Courier Corporation |
Total Pages | : 578 |
Release | : 2013-07-25 |
Genre | : Mathematics |
ISBN | : 048631796X |
A classic exposition of a branch of mathematical logic that uses category theory, this text is suitable for advanced undergraduates and graduate students and accessible to both philosophically and mathematically oriented readers.
Author | : B. Banaschewski |
Publisher | : Springer |
Total Pages | : 395 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540390413 |
Author | : M. Barr |
Publisher | : Springer |
Total Pages | : 347 |
Release | : 2013-06-09 |
Genre | : Mathematics |
ISBN | : 9781489900234 |
As its title suggests, this book is an introduction to three ideas and the connections between them. Before describing the content of the book in detail, we describe each concept briefly. More extensive introductory descriptions of each concept are in the introductions and notes to Chapters 2, 3 and 4. A topos is a special kind of category defined by axioms saying roughly that certain constructions one can make with sets can be done in the category. In that sense, a topos is a generalized set theory. However, it originated with Grothendieck and Giraud as an abstraction of the of the category of sheaves of sets on a topological space. Later, properties Lawvere and Tierney introduced a more general id~a which they called "elementary topos" (because their axioms did not quantify over sets), and they and other mathematicians developed the idea that a theory in the sense of mathematical logic can be regarded as a topos, perhaps after a process of completion. The concept of triple originated (under the name "standard construc in Godement's book on sheaf theory for the purpose of computing tions") sheaf cohomology. Then Peter Huber discovered that triples capture much of the information of adjoint pairs. Later Linton discovered that triples gave an equivalent approach to Lawverc's theory of equational theories (or rather the infinite generalizations of that theory). Finally, triples have turned out to be a very important tool for deriving various properties of toposes.
Author | : |
Publisher | : |
Total Pages | : 776 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : |