Propagation of Waves in Shear Flows

Propagation of Waves in Shear Flows
Author: Anatoli? L?vovich Fabrikant
Publisher: World Scientific
Total Pages: 308
Release: 1998
Genre: Science
ISBN: 9789810220525

A number of well-known theorems of the hydrodynamic theory of stability are interpreted in terms of the interaction of the waves having different energy signs. Attention is drawn to the plasma-hydrodynamic analogy, which is a powerful tool for physical analyses of general mechanisms of wave amplification and absorption in flows. Various wave-flow interaction problems are considered, for instance, sound generation in whistlers, wave scattering and amplification by vortices, methods of wave remote sounding, and some nonlinear dynamical and chaotic phenomena.

Wave Fields in Real Media

Wave Fields in Real Media
Author: José M. Carcione
Publisher: Elsevier
Total Pages: 690
Release: 2014-12-08
Genre: Science
ISBN: 0081000030

Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil

Internal Gravity Waves

Internal Gravity Waves
Author: Bruce R. Sutherland
Publisher: Cambridge University Press
Total Pages: 395
Release: 2010-09-02
Genre: Science
ISBN: 1316184323

The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.

Waves on Fluid Interfaces

Waves on Fluid Interfaces
Author: Richard E. Meyer
Publisher: Academic Press
Total Pages: 370
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483265145

Mathematics Research Center Symposium: Waves on Fluid Interfaces covers the proceedings of a symposium conducted by the Mathematics Research Center of the University of Wisconsin-Madison on October 18-20, 1982. The book focuses on nonlinear instabilities of classical interfaces, physical structure of real interfaces, and the challenges these reactions pose to the understanding of fluids. The selection first elaborates on finite-amplitude interfacial waves, instability of finite-amplitude interfacial waves, and finite-amplitude water waves with surface tension. Discussions focus on reformulation as an integro-differential equation, perturbation solutions, results for interfacial waves with current jump, wave of zero height, weakly nonlinear waves, and numerical methods. The text then takes a look at generalized vortex methods for free-surface flows; a review of solution methods for viscous flow in the presence of deformable boundaries; and existence criteria for fluid interfaces in the absence of gravity. The book ponders on the endothelial interface between tissue and blood, moving contact line, rupture of thin liquid films, film waves, and interfacial instabilities caused by air flow over a thin liquid layer. Topics include stability analysis of liquid film, interpretation of film instabilities, simple film, linear stability theory, inadequacy of the usual hydrodynamic model, and marcomolecule transport across the artery wall. The selection is a valuable source of data for researchers interested in the reactions of waves on fluid interfaces.

River Mechanics

River Mechanics
Author: Pierre Y. Julien
Publisher: Cambridge University Press
Total Pages: 527
Release: 2018-04-12
Genre: Science
ISBN: 1107462770

Completely updated and with three new chapters, this analysis of river dynamics is invaluable for advanced students, researchers and practitioners.

The Rock Physics Handbook

The Rock Physics Handbook
Author: Gary Mavko
Publisher: Cambridge University Press
Total Pages: 741
Release: 2020-01-09
Genre: Business & Economics
ISBN: 1108420265

Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.

Sound Propagation in Stratified Fluids

Sound Propagation in Stratified Fluids
Author: Calvin H. Wilcox
Publisher: Springer Science & Business Media
Total Pages: 206
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461211247

Stratified fluids whose densities, sound speeds and other parameters are functions of a single depth coordinate occur widely in nature. Indeed, the earth's gravitational field imposes a stratification on its atmosphere, oceans and lakes. It is well known that their stratification has a profound effect on the propagation of sound in these fluids. The most striking effect is probably the occurrence of acoustic ducts, due to minima of the sound speed, that can trap sound waves and cause them to propagate hori zontally. The reflection, transmission and distortion of sonar signals by acoustic ducts is important in interpreting sonar echoes. Signal scattering by layers of microscopic marine organisms is important to both sonar engi neers and marine biologists. Again, reflection of signals from bottom sediment layers overlying a penetrable bottom are of interest both as sources of unwanted echoes and in the acoustic probing of such layers. Many other examples could be given. The purpose of this monograph is to develop from first principles a theory of sound propagation in stratified fluids whose densities and sound speeds are essentially arbitrary functions of the depth. In physical terms, the propagation of both time-harmonic and transient fields is analyzed. The corresponding mathematical model leads to the study of boundary value problems for a scalar wave equation whose coefficients contain the pre scribed density and sound speed functions.

Stratified Flows

Stratified Flows
Author: Chia-Shun Yih
Publisher: Elsevier
Total Pages: 439
Release: 2012-12-02
Genre: Science
ISBN: 0323150403

Stratified Flows is the second edition of the book Dynamics of Nonhomogenous Fluids. This book discusses the flow of a fluid of variable density or entropy in a gravitational field. In this edition, corrections have been made; unnecessary parts have been omitted; and new sections as well as notes on results related to the subject have been added. This book includes a general discussion of the effects of density or entropy and the structure of stratified flows; waves of small amplitude; the Eigenvalue problem; dependence of phase velocity on wavelength; wave motion; steady flows of finite amplitude; and types of solutions for steady flows. This edition also covers other topics such as hydrodynamic stability; flows in porous media; and the analogy between gravitational and electromagnetic forces. This text is recommended for those in the field of physics who would like to be familiarized with stratified flows and its related concepts.

Waves and Mean Flows

Waves and Mean Flows
Author: Oliver Bühler
Publisher: Cambridge University Press
Total Pages: 362
Release: 2009-08-20
Genre: Science
ISBN: 1139480715

Interactions between waves and mean flows play a crucial role in understanding the long-term aspects of atmospheric and oceanographic modelling. Indeed, our ability to predict climate change hinges on our ability to model waves accurately. This book gives a modern account of the nonlinear interactions between waves and mean flows such as shear flows and vortices. A detailed account of the theory of linear dispersive waves in moving media is followed by a thorough introduction to classical wave–mean interaction theory. The author then extends the scope of the classical theory and lifts its restriction to zonally symmetric mean flows. The book is a fundamental reference for graduate students and researchers in fluid mechanics, and can be used as a text for advanced courses; it will also be appreciated by geophysicists and physicists who need an introduction to this important area in fundamental fluid dynamics and atmosphere-ocean science.