Progress In Nondifferentiable Optimization
Download Progress In Nondifferentiable Optimization full books in PDF, epub, and Kindle. Read online free Progress In Nondifferentiable Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Progress in Optimization
Author | : Andrew Eberhard |
Publisher | : Springer Science & Business Media |
Total Pages | : 309 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461332850 |
Although the monograph Progress in Optimization I: Contributions from Aus tralasia grew from the idea of publishing a proceedings of the Fourth Optimiza tion Day, held in July 1997 at the Royal Melbourne Institute of Technology, the focus soon changed to a refereed volume in optimization. The intention is to publish a similar book annually, following each Optimization Day. The idea of having an annual Optimization Day was conceived by Barney Glover; the first of these Optimization Days was held in 1994 at the University of Ballarat. Barney hoped that such a yearly event would bring together the many, but widely dispersed, researchers in Australia who were publishing in optimization and related areas such as control. The first Optimization Day event was followed by similar conferences at The University of New South Wales (1995), The University of Melbourne (1996), the Royal Melbourne Institute of Technology (1997), and The University of Western Australia (1998). The 1999 conference will return to Ballarat University, being organized by Barney's long-time collaborator Alex Rubinov. In recent years the Optimization Day has been held in conjunction with other locally-held national or international conferences. This has widened the scope of the monograph with contributions not only coming from researchers in Australia and neighboring regions but also from their collaborators in Europe and North America.
Nondifferentiable Optimization: Motivations and Applications
Author | : Vladimir F. Demyanov |
Publisher | : Springer Science & Business Media |
Total Pages | : 355 |
Release | : 2013-06-29 |
Genre | : Business & Economics |
ISBN | : 3662126036 |
The International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, has been involved in research on nondifferentiable optimization since 1976. IIASA-based East-West cooperation in this field has been very productive, leading to many important theoretical, algorithmic and applied results. Nondifferentiable optimi zation has now become a recognized and rapidly developing branch of mathematical programming. To continue this tradition, and to review recent developments in this field, IIASA held a Workshop on Nondifferentiable Optimization in Sopron (Hungary) in September 1964. The aims of the Workshop were: 1. To discuss the state-of-the-art of nondifferentiable optimization (NDO), its origins and motivation; 2. To compare-various algorithms; 3. To evaluate existing mathematical approaches, their applications and potential; 4. To extend and deepen industrial and other applications of NDO. The following topics were considered in separate sessions: General motivation for research in NDO: nondifferentiability in applied problems, nondifferentiable mathematical models. Numerical methods for solving nondifferentiable optimization problems, numerical experiments, comparisons and software. Nondifferentiable analysis: various generalizations of the concept of subdifferen tials. Industrial and other applications. This volume contains selected papers presented at the Workshop. It is divided into four sections, based on the above topics: I. Concepts in Nonsmooth Analysis II. Multicriteria Optimization and Control Theory III. Algorithms and Optimization Methods IV. Stochastic Programming and Applications We would like to thank the International Institute for Applied Systems Analysis, particularly Prof. V. Kaftanov and Prof. A.B. Kurzhanski, for their support in organiz ing this meeting.
Nondifferentiable Optimization and Polynomial Problems
Author | : N.Z. Shor |
Publisher | : Springer Science & Business Media |
Total Pages | : 407 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 1475760159 |
Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ... ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef'; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P.
Methods of Descent for Nondifferentiable Optimization
Author | : Krzysztof C. Kiwiel |
Publisher | : Springer |
Total Pages | : 369 |
Release | : 2006-11-14 |
Genre | : Science |
ISBN | : 3540395091 |
Modern Nonconvex Nondifferentiable Optimization
Author | : Ying Cui |
Publisher | : Society for Industrial and Applied Mathematics (SIAM) |
Total Pages | : 0 |
Release | : 2022 |
Genre | : Convex functions |
ISBN | : 9781611976731 |
"This monograph serves present and future needs where nonconvexity and nondifferentiability are inevitably present in the faithful modeling of real-world applications of optimization"--
Modern Nonconvex Nondifferentiable Optimization
Author | : Ying Cui |
Publisher | : SIAM |
Total Pages | : 792 |
Release | : 2021-12-02 |
Genre | : Mathematics |
ISBN | : 161197674X |
Starting with the fundamentals of classical smooth optimization and building on established convex programming techniques, this research monograph presents a foundation and methodology for modern nonconvex nondifferentiable optimization. It provides readers with theory, methods, and applications of nonconvex and nondifferentiable optimization in statistical estimation, operations research, machine learning, and decision making. A comprehensive and rigorous treatment of this emergent mathematical topic is urgently needed in today’s complex world of big data and machine learning. This book takes a thorough approach to the subject and includes examples and exercises to enrich the main themes, making it suitable for classroom instruction. Modern Nonconvex Nondifferentiable Optimization is intended for applied and computational mathematicians, optimizers, operations researchers, statisticians, computer scientists, engineers, economists, and machine learners. It could be used in advanced courses on optimization/operations research and nonconvex and nonsmooth optimization.
Nondifferentiable Optimization
Author | : V.F. Dem'yanov |
Publisher | : Springer |
Total Pages | : 452 |
Release | : 1985-12-12 |
Genre | : Science |
ISBN | : 9780387909516 |
Of recent coinage, the term "nondifferentiable optimization" (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in mathematics proper. The Chebyshev approximation problem is an ample illustration of this. Without loss of generality, we shall consider only minimization problems. Among nonsmooth minimization problems, minimax problems and convex problems have been studied extensively ([31], [36], [57], [110], [120]). Interest in NDO has been constantly growing in recent years (monographs: [30], [81], [127] and articles and papers: [14], [20], [87]-[89], [98], [130], [135], [140]-[142], [152], [153], [160], all dealing with various aspects of non smooth optimization). For solving an arbitrary minimization problem, it is neces sary to: 1. Study properties of the objective function, in particular, its differentiability and directional differentiability. 2. Establish necessary (and, if possible, sufficient) condi tions for a global or local minimum. 3. Find the direction of descent (steepest or, simply, feasible--in appropriate sense). 4. Construct methods of successive approximation. In this book, the minimization problems for nonsmooth func tions of a finite number of variables are considered. Of fun damental importance are necessary conditions for an extremum (for example, [24], [45], [57], [73], [74], [103], [159], [163], [167], [168].
Minimization Methods for Non-Differentiable Functions
Author | : N.Z. Shor |
Publisher | : Springer Science & Business Media |
Total Pages | : 171 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642821189 |
In recent years much attention has been given to the development of auto matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math ematical software packages for al,ltomatic systems of various levels and pur poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the ~xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author's work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods.