Production Properties Of Z Bosons With Jets In 18 Tev Anti Pp Collisions
Download Production Properties Of Z Bosons With Jets In 18 Tev Anti Pp Collisions full books in PDF, epub, and Kindle. Read online free Production Properties Of Z Bosons With Jets In 18 Tev Anti Pp Collisions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Looking Inside Jets
Author | : Simone Marzani |
Publisher | : Springer |
Total Pages | : 210 |
Release | : 2019-05-11 |
Genre | : Science |
ISBN | : 3030157091 |
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
60 Years Of Cern Experiments And Discoveries
Author | : Herwig Schopper |
Publisher | : World Scientific |
Total Pages | : 452 |
Release | : 2015-07-13 |
Genre | : Science |
ISBN | : 9814644161 |
The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.
Physics for Particle Detectors and Particle Detectors for Physics
Author | : Philipp Windischhofer |
Publisher | : Springer Nature |
Total Pages | : 243 |
Release | : 2023-10-02 |
Genre | : Science |
ISBN | : 3031390555 |
Experimental particle physics is a science of many scales. A large number of physical processes spanning energies from meV to TeV must be understood for modern collider experiments to be designed, built, and conducted successfully. This thesis contributes to the understanding of phenomena across this entire dynamic range. The first half of this document studies aspects of low-energy physics that govern the operation of particle detectors, limit their performance, and guide the development of novel instrumentation. To formalise these aspects, classical electrodynamics is used to derive a general description of the formation of electrical signals in detectors, and ideas from quantum mechanics are applied to the study of charge avalanche amplification in semiconductors. These results lead to a comprehensive analytical characterisation of the time resolution and the efficiency of single-photon avalanche diodes, and isolate the most important design variables. They also reveal the applicability of these devices in precision timing detectors for charged particles, which is experimentally verified in a high-energy hadron beam. Large detector systems at hadron colliders probe fundamental physics at the energy frontier. In the second half, data collected with the ATLAS detector during Run 2 of the Large Hadron Collider are used to measure the cross-section for the production of a Higgs boson together with an electroweak boson as a function of the kinematic scale of the process. This measurement provides the finest granularity available to date for this process. It is highly informative of the structure of interactions beyond the direct kinematic reach of the experiment, and new limits are set on the couplings of such interactions within an effective field theory.
The Structure of the Proton
Author | : R. G. Roberts |
Publisher | : Cambridge University Press |
Total Pages | : 200 |
Release | : 1993-11-26 |
Genre | : Science |
ISBN | : 9780521449441 |
This graduate/research level book describes our present knowledge of protons and neutrons, the particles which make up the nucleus of the atom. Experiments using high energy electrons, muons and neutrinos reveal the proton as being made up of point-like constituents, quarks. The strong forces which bind the quarks together are described in terms of the modern theory of quantum chromodynamics (QCD), the â€~glue' binding the quarks being mediated by new constituents called gluons. Larger and new particle accelerators probe the interactions between quarks and gluons at shorter distances. The understanding of this detailed substructure and of the fundamental forces responsible is one of the keys to unravelling the physics of the structure of matter. This book will be of interest to all theoretical and experimental particle physicists.