Processing And Characterization Of Shape Memory Polymer Nanocomposites Preprint
Download Processing And Characterization Of Shape Memory Polymer Nanocomposites Preprint full books in PDF, epub, and Kindle. Read online free Processing And Characterization Of Shape Memory Polymer Nanocomposites Preprint ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Arun D I |
Publisher | : CRC Press |
Total Pages | : 215 |
Release | : 2018-04-27 |
Genre | : Technology & Engineering |
ISBN | : 1351119923 |
This work addresses the basic principles, synthesis / fabrication and applications of smart materials, specifically shape memory materials Based on origin, the mechanisms of transformations vary in different shape memory materials and are discussed in different chapters under titles of shape memory alloys, ceramics, gels and polymers Complete coverage of composite formation with polymer matrix and reinforcement filler conductive materials with examples
Author | : Jinlian Hu |
Publisher | : Elsevier |
Total Pages | : 366 |
Release | : 2013-04-16 |
Genre | : Technology & Engineering |
ISBN | : 0857098543 |
Shape memory materials are immensely useful because of their capability to recover their original shapes upon exposure to an external stimulus such as heat, moisture, light or a magnetic field. This book reviews key recent research in shape memory polymers, their properties and applications. Topics include the relationship between morphological structures and shape memory properties; high performance Tg and Tm type shape memory polymers; structures of shape memory polymers with supramolecular switches; and the thermally-active and moisture-active shape memory effect of supermolecular shape memory polymers.Advances in shape memory polymers is an essential reference for polymer and textile material students, scientists, designers, engineers and manufacturers. It is also an invaluable guide for professionals in the biomedical, electronics and engineering industries. - Reviews key recent research in shape-memory polymers, their properties and applications - Opening chapters address the relationship between morphological structures and shape memory properties and high performance Tg and Tm type shape memory polymers - Chapters cover thermally-active and moisture-active shape memory effect of supermolecular shape memory polymers, among other topics
Author | : W.M. Huang |
Publisher | : CRC Press |
Total Pages | : 374 |
Release | : 2011-09-08 |
Genre | : Technology & Engineering |
ISBN | : 1439838011 |
Shape memory polymers (SMPs) are some of the most important and valuable engineering materials developed in the last 25 years. These fascinating materials demonstrate remarkably versatile properties-including capacity for actuation and stimulus responsiveness-that are enabling technologists to develop applications used to explore everything from th
Author | : Ye Zhou |
Publisher | : John Wiley & Sons |
Total Pages | : 304 |
Release | : 2021-03-24 |
Genre | : Technology & Engineering |
ISBN | : 3527826505 |
Polymer Nanocomposite Materials Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices delivers an original and insightful treatment of polymer nanocomposite applications in energy, information, and biotechnology. The book systematically reviews the preparation and characterization of polymer nanocomposites from zero-, one-, and two-dimensional nanomaterials. The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. Polymer Nanocomposite Materials discusses challenges associated with the devices and materials, possible strategies for future directions of the technology, and the possible commercial applications of electronic devices built on these materials. Readers will also benefit from the inclusion of: A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.
Author | : Jinlian Hu |
Publisher | : Smithers Rapra |
Total Pages | : 326 |
Release | : 2014-05-27 |
Genre | : Science |
ISBN | : 1909030333 |
Shape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing. This book provides the latest advanced information of on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP. The basic fundamentals of SMP, including shape-memory mechanisms and mechanics are described. This will aid reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field. The book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well. This book should prove to be extremely useful for academics, R&D managers, researcher scientists, engineers, and all others related to the SMP research.
Author | : Kishor Kumar Sadasivuni |
Publisher | : Springer |
Total Pages | : 413 |
Release | : 2019-01-29 |
Genre | : Technology & Engineering |
ISBN | : 3030047415 |
This book presents a thorough discussion of the physics, biology, chemistry and medicinal science behind a new and important area of materials science and engineering: polymer nanocomposites. The tremendous opportunities of polymer nanocomposites in the biomedical field arise from their multitude of applications and their ability to satisfy the vastly different functional requirements for each of these applications. In the biomedical field, a polymer nanocomposite system must meet certain design and functional criteria, including biocompatibility, biodegradability, mechanical properties, and, in some cases, aesthetic demands. The content of this book builds on what has been learnt in elementary courses about synthesising polymers, different nanoparticles, polymer composites, biomedical requirements, uses of polymer nanocomposites in medicine as well as medical devices and the major mechanisms involved during each application. The impact of hybrid nanofillers and synergistic composite mixtures which are used extensively or show promising outcomes in the biomedical field are also discussed. These novel materials vary from inorganic/ceramic-reinforced nanocomposites for mechanical property improvement to peptide-based nanomaterials, with the chemistry designed to render the entire material biocompatible.
Author | : A. Charlesby |
Publisher | : Elsevier |
Total Pages | : 579 |
Release | : 2016-06-06 |
Genre | : Science |
ISBN | : 1483181308 |
Atomic Radiation and Polymers examines the effects of radiation on polymer materials. The title deals with chemical changes that took place when polymers are exposed to radiation, and how these changes affect the physical properties of the polymers. The text first covers the interaction of radiation and matter, along with radiation sources and dosimetry. Next, the selection deals with the general properties of long chain polymers. The text also details the organic molecules and irradiated polymers. Chapters 22 to 24 tackle the radiation-induced changes in nuclear chain reaction, while Chapter 25 discusses the irradiation of polymers in solution where both direct and indirect effects occur. The next series of chapters details the theoretical aspects of reactions between the initial acts of ionization or excitation. The last two chapters cover the conductivity change at low radiation intensities, along with the data on radiation damage at very high intensities. The book will be of great interest to researchers and practitioners from the field of nuclear science and polymer technology.
Author | : Jian Li |
Publisher | : Springer Nature |
Total Pages | : 723 |
Release | : 2020-01-23 |
Genre | : Technology & Engineering |
ISBN | : 3030366286 |
This collection gives broad and up-to-date results in the research and development of materials characterization and processing. Topics covered include advanced characterization methods, minerals, mechanical properties, coatings, polymers and composites, corrosion, welding, magnetic materials, and electronic materials. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
Author | : L Yahia |
Publisher | : Elsevier |
Total Pages | : 325 |
Release | : 2015-03-19 |
Genre | : Technology & Engineering |
ISBN | : 0857097059 |
Shape memory polymers (SMPs) are an emerging class of smart polymers which give scientists the ability to process the material into a permanent state and predefine a second temporary state which can be triggered by different stimuli. The changing chemistries of SMPs allows scientists to tailor important properties such as strength, stiffness, elasticity and expansion rate. Consequently SMPs are being increasingly used and developed for minimally invasive applications where the material can expand and develop post insertion. This book will provide readers with a comprehensive review of shape memory polymer technologies. Part 1 will discuss the fundamentals and mechanical aspects of SMPs. Chapters in part 2 will look at the range of technologies and materials available for scientific manipulation whilst the final set of chapters will review applications. - Reviews the fundamentals of shape memory polymers with chapters focussing on the basic principles of the materials - Comprehensive coverage of design and mechanical aspects of SMPs - Expert analysis of the range of technologies and materials available for scientific manipulation
Author | : American Chemical Society. Meeting |
Publisher | : |
Total Pages | : 284 |
Release | : 2006 |
Genre | : Science |
ISBN | : |
Introduction to cellulose nanocomposites; strategies for preparation of cellulose wiskers from microcrystalline cellulose as reinforcement in nanocomposites; self-assembly of cellulose nanocrystals: parabolic focal conic films; cellulose fibrils: isolation, characterization, and capability for technical applications; morphology of cellulose and its nanocomposites; useful insights into cellulose nanocomposites using raman spectroscopy; novel methods for interfacial modification of cellulose - reinforced composites; cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties; the structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion; preparation and properties of biopolymer-based nanocomposites films using microcrystalline cellulose; nanocompusites based on cellulose microfibril; cellulose microfibers as reinforcing agents for structural materials; dispersion of soybean stock-based nanofiber in plastic matrix; polysulfone-cellulose nanocomposites; bacterial cellulose and its nanocomposites for biomedical applications.