Extended Defects in Semiconductors

Extended Defects in Semiconductors
Author: D. B. Holt
Publisher: Cambridge University Press
Total Pages: 625
Release: 2007-04-12
Genre: Science
ISBN: 1139463594

A discussion of the basic properties of structurally extended defects, their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.

Defect Control in Semiconductors

Defect Control in Semiconductors
Author: K. Sumino
Publisher: Elsevier
Total Pages: 817
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0444600647

Defect control in semiconductors is a key technology for realizing the ultimate possibilities of modern electronics. The basis of such control lies in an integrated knowledge of a variety of defect properties. From this viewpoint, the volume discusses defect-related problems in connection with defect control in semiconducting materials, such as silicon, III-V, II-VI compounds, organic semiconductors, heterostructure, etc.The conference brought together scientists in the field of fundamental research and engineers involved in application related to electronic devices in order to promote future research activity in both fields and establish a fundamental knowledge of defect control. The main emphasis of the 254 papers presented in this volume is on the control of the concentration, distribution, structural and electronic states of any types of defects including impurities as well as control of the electrical, optical and other activities of defects. Due to the extensive length of the contents, only the number of papers presented per session is listed below.

Defect Recognition and Image Processing in Semiconductors 1997

Defect Recognition and Image Processing in Semiconductors 1997
Author: J. Doneker
Publisher: Routledge
Total Pages: 552
Release: 2017-11-22
Genre: Science
ISBN: 1351456466

Defect Recognition and Image Processing in Semiconductors 1997 provides a valuable overview of current techniques used to assess, monitor, and characterize defects from the atomic scale to inhomogeneities in complete silicon wafers. This volume addresses advances in defect analyzing techniques and instrumentation and their application to substrates, epilayers, and devices. The book discusses the merits and limits of characterization techniques; standardization; correlations between defects and device performance, including degradation and failure analysis; and the adaptation and application of standard characterization techniques to new materials. It also examines the impressive advances made possible by the increase in the number of nanoscale scanning techniques now available. The book investigates defects in layers and devices, and examines the problems that have arisen in characterizing gallium nitride and silicon carbide.

Gettering Defects in Semiconductors

Gettering Defects in Semiconductors
Author: Victor A. Perevostchikov
Publisher: Springer Science & Business Media
Total Pages: 400
Release: 2005-12-12
Genre: Technology & Engineering
ISBN: 3540294996

Gettering Defects in Semiconductors fulfills three basic purposes: – to systematize the experience and research in exploiting various gettering techniques in microelectronics and nanoelectronics; – to identify new directions in research, particularly to enhance the perspective of professionals and young researchers and specialists; – to fill a gap in the contemporary literature on the underlying semiconductor-material theory. The authors address not only well-established gettering techniques but also describe contemporary trends in gettering technologies from an international perspective. The types and properties of structural defects in semiconductors, their generating and their transforming mechanisms during fabrication are described. The primary emphasis is placed on classifying and describing specific gettering techniques, their specificity arising from both their position in a general technological process and the regimes of their application. This book addresses both engineers and material scientists interested in semiconducting materials theory and also undergraduate and graduate students in solid–state microelectronics and nanoelectronics. A comprehensive list of references provides readers with direction for further reading.

Photo-induced Defects in Semiconductors

Photo-induced Defects in Semiconductors
Author: David Redfield
Publisher: Cambridge University Press
Total Pages: 231
Release: 1996-01-26
Genre: Science
ISBN: 0521461960

A thorough review of the properties of deep-level, localized defects in semiconductors.

Identification of Defects in Semiconductors

Identification of Defects in Semiconductors
Author:
Publisher: Academic Press
Total Pages: 449
Release: 1998-10-27
Genre: Science
ISBN: 008086449X

GENERAL DESCRIPTION OF THE SERIESSince its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. GENERAL DESCRIPTION OF THE VOLUMEThis volume has contributions on Advanced Characterization Techniques with a focus on defect identification. The combination of beam techniques with electrical and optical characterization has not been discussed elsewhere.

III-Nitride Semiconductors

III-Nitride Semiconductors
Author: M.O. Manasreh
Publisher: Elsevier
Total Pages: 463
Release: 2000-12-06
Genre: Science
ISBN: 0080534449

Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structural defects and phonon confinement. This unique volume provides a comprehensive review and introduction of defects and structural properties of GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers. Given the current level of interest and research activity directed towards nitride materials and devices, the publication of the volume is particularly timely. Early pioneering work by Pankove and co-workers in the 1970s yielded a metal-insulator-semiconductor GaN light-emitting diode (LED), but the difficulty of producing p-type GaN precluded much further effort. The current level of activity in nitride semiconductors was inspired largely by the results of Akasaki and co-workers and of Nakamura and co-workers in the late 1980s and early 1990s in the development of p-type doping in GaN and the demonstration of nitride-based LEDs at visible wavelengths. These advances were followed by the successful fabrication and commercialization of nitride blue laser diodes by Nakamura et al at Nichia. The chapters contained in this volume constitutes a mere sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.

Physical Chemistry of Semiconductor Materials and Processes

Physical Chemistry of Semiconductor Materials and Processes
Author:
Publisher: John Wiley & Sons
Total Pages: 420
Release: 2015-10-12
Genre: Science
ISBN: 1118514572

The development of solid state devices began a little more than a century ago, with the discovery of the electrical conductivity of ionic solids. Today, solid state technologies form the background of the society in which we live. The aim of this book is threefold: to present the background physical chemistry on which the technology of semiconductor devices is based; secondly, to describe specific issues such as the role of defects on the properties of solids, and the crucial influence of surface properties; and ultimately, to look at the physics and chemistry of semiconductor growth processes, both at the bulk and thin-film level, together with some issues relating to the properties of nano-devices. Divided into five chapters, it covers: Thermodynamics of solids, including phases and their properties and structural order Point defects in semiconductors Extended defects in semiconductors and their interactions with point defects and impurities Growth of semiconductor materials Physical chemistry of semiconductor materials processing With applications across all solid state technologies,the book is useful for advanced students and researchers in materials science, physics, chemistry, electrical and electronic engineering. It is also useful for those in the semiconductor industry.

Advanced Optical Spectroscopy Techniques for Semiconductors

Advanced Optical Spectroscopy Techniques for Semiconductors
Author: Masanobu Yoshikawa
Publisher: Springer Nature
Total Pages: 227
Release: 2023-03-23
Genre: Technology & Engineering
ISBN: 3031197224

This book focuses on advanced optical spectroscopy techniques for the characterization of cutting-edge semiconductor materials. It covers a wide range of techniques such as Raman, infrared, photoluminescence, and cathodoluminescence (CL) spectroscopy, including an introduction to their physical fundamentals and best operating principles. Aimed at professionals working in the research and development of semiconductors and semiconductor materials, this book looks at a broad class of materials such as silicon and silicon dioxide, nano-diamond thin films, quantum dots, and gallium oxide. In addition to the spectroscopic techniques covered, this book features a chapter devoted to the use of a scanning electron transmission microscope as an excitation source for CL spectroscopy. Written by a practicing industry expert in the field, this book is an ideal source of reference and best-practices guide for physicists, as well as materials scientists and engineers involved in the area of spectroscopy of semiconductor materials. Further, this book introduces the cutting-edge spectroscopy such as optical photothermal IR and Raman spectroscopy or terahertz time-domain spectroscopy (THz-TDS) etc.