Radioisotopes in Industry

Radioisotopes in Industry
Author: John Ross Bradford
Publisher:
Total Pages: 318
Release: 2013-05
Genre:
ISBN: 9781258707200

Contributing Authors Include P. C. Aebersold, J. R. Bradford, G. D. Calkins, And Many Others.

Isotopes for Medicine and the Life Sciences

Isotopes for Medicine and the Life Sciences
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 144
Release: 1995-01-27
Genre: Medical
ISBN: 0309176697

Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many casesâ€"for example, biological tracersâ€"there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.

Radiation Source Use and Replacement

Radiation Source Use and Replacement
Author: National Research Council
Publisher: National Academies Press
Total Pages: 232
Release: 2008-05-25
Genre: Medical
ISBN: 0309110149

In the United States there are several thousand devices containing high-activity radiation sources licensed for use in areas ranging from medical uses such as cancer therapy to safety uses such as testing of structures and industrial equipment. Those radiation sources are licensed by the U.S. Nuclear Regulatory Commission and state agencies. Concerns have been raised about the safety and security of the radiation sources, particularly amid fears that they could be used to create dirty bombs, or radiological dispersal device (RDD). In response to a request from Congress, the U.S. Nuclear Regulatory Commission asked the National Research Council to conduct a study to review the uses of high-risk radiation sources and the feasibility of replacing them with lower risk alternatives. The study concludes that the U.S. government should consider factors such as potential economic consequences of misuse of the radiation sources into its assessments of risk. Although the committee found that replacements of most sources are possible, it is not economically feasible in some cases. The committee recommends that the U.S. government take steps to in the near term to replace radioactive cesium chloride radiation sources, a potential "dirty bomb" ingredient used in some medical and research equipment, with lower-risk alternatives. The committee further recommends that longer term efforts be undertaken to replace other sources. The book presents a number of options for making those replacements.

The Supply of Medical Isotopes

The Supply of Medical Isotopes
Author:
Publisher:
Total Pages: 122
Release: 2019
Genre:
ISBN: 9789264625099

This report explores the main reasons behind the unreliable supply of Technetium-99m (Tc-99m) in health-care systems and policy options to address the issue. Tc-99m is used in 85% of nuclear medicine diagnostic scans performed worldwide – around 30 million patient examinations every year. These scans allow diagnoses of diseases in many parts of the human body, including the skeleton, heart and circulatory system, and the brain. Medical isotopes are subject to radioactive decay and have to be delivered just-in-time through a complex supply chain. However, ageing production facilities and a lack of investment have made the supply of Tc-99m unreliable. This report analyses the use and substitutability of Tc-99m in health care, health-care provider payment mechanisms for scans, and the structure of the supply chain. It concludes that the main reasons for unreliable supply are that production is not economically viable and that the structure of the supply chain prevents producers from charging prices that reflect the full costs of production and supply.

Medical Isotope Production Without Highly Enriched Uranium

Medical Isotope Production Without Highly Enriched Uranium
Author: National Research Council
Publisher: National Academies Press
Total Pages: 220
Release: 2009-06-27
Genre: Medical
ISBN: 0309130395

This book is the product of a congressionally mandated study to examine the feasibility of eliminating the use of highly enriched uranium (HEU2) in reactor fuel, reactor targets, and medical isotope production facilities. The book focuses primarily on the use of HEU for the production of the medical isotope molybdenum-99 (Mo-99), whose decay product, technetium-99m3 (Tc-99m), is used in the majority of medical diagnostic imaging procedures in the United States, and secondarily on the use of HEU for research and test reactor fuel. The supply of Mo-99 in the U.S. is likely to be unreliable until newer production sources come online. The reliability of the current supply system is an important medical isotope concern; this book concludes that achieving a cost difference of less than 10 percent in facilities that will need to convert from HEU- to LEU-based Mo-99 production is much less important than is reliability of supply.

Molybdenum-99 for Medical Imaging

Molybdenum-99 for Medical Imaging
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 264
Release: 2016-11-28
Genre: Medical
ISBN: 0309445310

The decay product of the medical isotope molybdenum-99 (Mo-99), technetium-99m (Tc-99m), and associated medical isotopes iodine-131 (I-131) and xenon-133 (Xe-133) are used worldwide for medical diagnostic imaging or therapy. The United States consumes about half of the world's supply of Mo-99, but there has been no domestic (i.e., U.S.-based) production of this isotope since the late 1980s. The United States imports Mo-99 for domestic use from Australia, Canada, Europe, and South Africa. Mo-99 and Tc-99m cannot be stockpiled for use because of their short half-lives. Consequently, they must be routinely produced and delivered to medical imaging centers. Almost all Mo-99 for medical use is produced by irradiating highly enriched uranium (HEU) targets in research reactors, several of which are over 50 years old and are approaching the end of their operating lives. Unanticipated and extended shutdowns of some of these old reactors have resulted in severe Mo-99 supply shortages in the United States and other countries. Some of these shortages have disrupted the delivery of medical care. Molybdenum-99 for Medical Imaging examines the production and utilization of Mo-99 and associated medical isotopes, and provides recommendations for medical use.