Rapid Penetration into Granular Media

Rapid Penetration into Granular Media
Author: Magued Iskander
Publisher: Elsevier
Total Pages: 473
Release: 2015-07-10
Genre: Science
ISBN: 0128011556

Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Penetration introduces readers to the variety of methods developed to visualize, observe, and model the rapid penetration of natural and man-made projectiles into earth materials while providing seasoned practitioners with a standard reference that showcases the topic's most recent developments in research and application. There has been a flurry of recently funded research both in the U.S. and Europe on studying the behavior of projectiles in granular media. This book compiles the findings of recent research on the subject and outlines the fundamental physics of rapid earth penetration, and assembles a comprehensive collection of experimental and numerical techniques to study the problem. - Presents a comprehensive interdisciplinary review of the latest research developments in the response of granular media to impact and impulsive loading - Combines the experience of prominent researchers from different disciplines focusing on the challenges presented by impact loading of granular media - Introduces recently developed methods for visualizing the fundamental physics of rapid penetration into granular media

Risk Management Series: Safe Rooms and Shelters - Protecting People Agains Terrorist Attacks

Risk Management Series: Safe Rooms and Shelters - Protecting People Agains Terrorist Attacks
Author: Federal Emergency Agency
Publisher: FEMA
Total Pages: 264
Release: 2013-01-26
Genre: Social Science
ISBN:

This manual is intended to provide guidance for engineers, architects, building officials, and property owners to design shelters and safe rooms in buildings. It presents information about the design and construction of shelters in the work place, home, or community building that will provide protection in response to manmade hazards. The information contained herein will assist in the planning and design of shelters that may be constructed outside or within dwellings or public buildings. These safe rooms will protect occupants from a variety of hazards, including debris impact, accidental or intentional explosive detonation, and the accidental or intentional release of a toxic substance into the air. Safe rooms may also be designed to protect individuals from assaults and attempted kidnapping, which requires design features to resist forced entry and ballistic impact. This covers a range of protective options, from low-cost expedient protection (what is commonly referred to as sheltering-in-place) to safe rooms ventilated and pressurized with air purified by ultra-high-efficiency filters. These safe rooms protect against toxic gases, vapors, and aerosols. The contents of this manual supplement the information provided in FEMA 361, Design and Construction Guidance for Community Shelters and FEMA 320, Taking Shelter From the Storm: Building a Safe Room Inside Your House. In conjunction with FEMA 361 and FEMA 320, this publication can be used for the protection of shelters against natural disasters. This guidance focuses on safe rooms as standby systems, ones that do not provide protection on a continuous basis. To employ a standby system requires warning based on knowledge that a hazardous condition exists or is imminent. Protection is initiated as a result of warnings from civil authorities about a release of hazardous materials, visible or audible indications of a release (e.g., explosion or fire), the odor of a chemical agent, or observed symptoms of exposure in people. Although there are automatic detectors for chemical agents, such detectors are expensive and limited in the number of agents that can be reliably detected. Furthermore, at this point in time, these detectors take too long to identify the agent to be useful in making decisions in response to an attack. Similarly, an explosive vehicle or suicide bomber attack rarely provides advance warning; therefore, the shelter is most likely to be used after the fact to protect occupants until it is safe to evacuate the building. Two different types of shelters may be considered for emergency use, standalone shelters and internal shelters. A standalone shelter is a separate building (i.e., not within or attached to any other building) that is designed and constructed to withstand the range of natural and manmade hazards. An internal shelter is a specially designed and constructed room or area within or attached to a larger building that is structurally independent of the larger building and is able to withstand the range of natural and manmade hazards. Both standalone and internal shelters are intended to provide emergency refuge for occupants of commercial office buildings, school buildings, hospitals, apartment buildings, and private homes from the hazards resulting from a wide variety of extreme events. The shelters may be used during natural disasters following the warning that an explosive device may be activated, the discovery of an explosive device, or until safe evacuation is established following the detonation of an explosive device or the release of a toxic substance via an intentional aerosol attack or an industrial accident. Standalone community shelters may be constructed in neighborhoods where existing homes lack shelters. Community shelters may be intended for use by the occupants of buildings they are constructed within or near, or they may be intended for use by the residents of surrounding or nearby neighborhoods or designated areas.

Similarity Methods in Engineering Dynamics

Similarity Methods in Engineering Dynamics
Author: P.S. Westine
Publisher: Elsevier
Total Pages: 397
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0444598138

Here is the second revised and updated edition of probably the most practical sourcebook on similarity methods and modeling techniques available. Written by leading authorities who incorporate many of the latest advances in the field, this new work maps out techniques for modeling as well as instrumentation and data analysis for an extremely wide array of problems in engineering dynamics. This practical reference uses experimental test data on various engineering problems demonstrating exactly how and why these similarity methods work. The problems involve spread of oil slicks, explosive cratering, car crashes, space vehicle heat exchange, explosive forming, and more. The spectrum of topics covered and number of examples are far greater than in other texts. Of particular importance are the dissimilar material modeling techniques which bring new versatility and freedom to the modeler in structural dynamics. The book also contains a clear, in-depth discussion of the theory underlying modeling and includes alternate methods for developing model laws. The work will undoubtedly prove invaluable to every professional involved in testing or design of dynamic experiments.