Problems on Partial Differential Equations

Problems on Partial Differential Equations
Author: Maciej Borodzik
Publisher: Springer
Total Pages: 260
Release: 2019-05-07
Genre: Mathematics
ISBN: 3030147347

This book covers a diverse range of topics in Mathematical Physics, linear and nonlinear PDEs. Though the text reflects the classical theory, the main emphasis is on introducing readers to the latest developments based on the notions of weak solutions and Sobolev spaces. In numerous problems, the student is asked to prove a given statement, e.g. to show the existence of a solution to a certain PDE. Usually there is no closed-formula answer available, which is why there is no answer section, although helpful hints are often provided. This textbook offers a valuable asset for students and educators alike. As it adopts a perspective on PDEs that is neither too theoretical nor too practical, it represents the perfect companion to a broad spectrum of courses.

Partial Differential Equations

Partial Differential Equations
Author: Thomas Hillen
Publisher: John Wiley & Sons
Total Pages: 610
Release: 2014-08-21
Genre: Mathematics
ISBN: 1118438434

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Partial Differential Equations and Boundary-Value Problems with Applications

Partial Differential Equations and Boundary-Value Problems with Applications
Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
Total Pages: 545
Release: 2011
Genre: Mathematics
ISBN: 0821868896

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Principles of Partial Differential Equations

Principles of Partial Differential Equations
Author: Alexander Komech
Publisher: Springer Science & Business Media
Total Pages: 165
Release: 2009-10-05
Genre: Mathematics
ISBN: 1441910956

This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Partial Differential Equations

Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2007-12-21
Genre: Mathematics
ISBN: 0470054565

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Tools and Problems in Partial Differential Equations

Tools and Problems in Partial Differential Equations
Author: Thomas Alazard
Publisher: Springer Nature
Total Pages: 357
Release: 2020-10-19
Genre: Mathematics
ISBN: 3030502848

This textbook offers a unique learning-by-doing introduction to the modern theory of partial differential equations. Through 65 fully solved problems, the book offers readers a fast but in-depth introduction to the field, covering advanced topics in microlocal analysis, including pseudo- and para-differential calculus, and the key classical equations, such as the Laplace, Schrödinger or Navier-Stokes equations. Essentially self-contained, the book begins with problems on the necessary tools from functional analysis, distributions, and the theory of functional spaces, and in each chapter the problems are preceded by a summary of the relevant results of the theory. Informed by the authors' extensive research experience and years of teaching, this book is for graduate students and researchers who wish to gain real working knowledge of the subject.

Problems and Solutions in Mathematics

Problems and Solutions in Mathematics
Author: Ji-Xiu Chen
Publisher: World Scientific
Total Pages: 804
Release: 2011
Genre: Mathematics
ISBN: 9814304964

This book contains a selection of more than 500 mathematical problems and their solutions from the PhD qualifying examination papers of more than ten famous American universities. The mathematical problems cover six aspects of graduate school mathematics: Algebra, Topology, Differential Geometry, Real Analysis, Complex Analysis and Partial Differential Equations. While the depth of knowledge involved is not beyond the contents of the textbooks for graduate students, discovering the solution of the problems requires a deep understanding of the mathematical principles plus skilled techniques. For students, this book is a valuable complement to textbooks. Whereas for lecturers teaching graduate school mathematics, it is a helpful reference.

Partial Differential Equations

Partial Differential Equations
Author: T. Hillen
Publisher: FriesenPress
Total Pages: 683
Release: 2019-05-15
Genre: Mathematics
ISBN: 152555025X

Provides more than 150 fully solved problems for linear partial differential equations and boundary value problems. Partial Differential Equations: Theory and Completely Solved Problems offers a modern introduction into the theory and applications of linear partial differential equations (PDEs). It is the material for a typical third year university course in PDEs. The material of this textbook has been extensively class tested over a period of 20 years in about 60 separate classes. The book is divided into two parts. Part I contains the Theory part and covers topics such as a classification of second order PDEs, physical and biological derivations of the heat, wave and Laplace equations, separation of variables, Fourier series, D’Alembert’s principle, Sturm-Liouville theory, special functions, Fourier transforms and the method of characteristics. Part II contains more than 150 fully solved problems, which are ranked according to their difficulty. The last two chapters include sample Midterm and Final exams for this course with full solutions.

Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations
Author: Victor Isakov
Publisher: Springer Science & Business Media
Total Pages: 296
Release: 2013-06-29
Genre: Mathematics
ISBN: 1489900306

A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations
Author: Michael Renardy
Publisher: Springer Science & Business Media
Total Pages: 447
Release: 2006-04-18
Genre: Mathematics
ISBN: 0387216871

Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.