Probing the Response of Two-Dimensional Crystals by Optical Spectroscopy

Probing the Response of Two-Dimensional Crystals by Optical Spectroscopy
Author: Yilei Li
Publisher: Springer
Total Pages: 80
Release: 2015-11-09
Genre: Science
ISBN: 331925376X

This thesis focuses on the study of the optical response of new atomically thin two-dimensional crystals, principally the family of transition metal dichalcogenides like MoS2. One central theme of the thesis is the precise treatment of the linear and second-order nonlinear optical susceptibilities of atomically thin transition metal dichalcogenides. In addition to their significant scientific interest as fundamental material responses, these studies provide essential knowledge and convenient characterization tools for the application of these 2D materials in opto-electronic devices. Another important theme of the thesis is the valley physics of atomically thin transition metal dichalcogenides. It is shown that the degeneracy in the valley degree of freedom can be lifted and a valley polarization can be created using a magnetic field, which breaks time reversal symmetry in these materials. These findings enhance our basic understanding of the valley electronic states and open up new opportunities for valleytronic applications using two-dimensional materials.

Cirrus

Cirrus
Author: David K. Lynch
Publisher: Oxford University Press, USA
Total Pages: 499
Release: 2002
Genre: Cirrus clouds
ISBN: 0195130723

This text, devoted entirely to cirrus clouds, captures the state of knowledge of cirrus clouds and serves as a practical handbook as well.

GraphITA 2011

GraphITA 2011
Author: Luca Ottaviano
Publisher: Springer Science & Business Media
Total Pages: 225
Release: 2012-03-06
Genre: Technology & Engineering
ISBN: 3642206441

In recent years, graphene based research has witnessed a tremendous explosion. This two dimensional "dream" material has come into the main spotlight of fundamental and applied research in diverse nano-science fields, but surprisingly rapidly, it has also attracted the interest of major stakeholders in the private sector (especially industries in the ICT sector). The technological exploitation of graphene can be considered to be based on four fundamental interconnected wide topics: growth and synthesis methods, nano-structuring and tailoring of graphene properties, structural and physical characterization, and device design and applications. This proceedings book presents the results highlighted at GraphITA 2011, a multidisciplinary and intersectorial European Workshop on Synthesis, Characterization and Technological Exploitation of Graphene. The workshop realised on 15-18 May at Gran Sasso National Laboratories (Assegi-L'Aquila, Italy) has brought together scientists and engineers working on different technological uses of graphene in a multidisciplinary and multisectorial (academia/industry) environment.

Defects in Two-Dimensional Materials

Defects in Two-Dimensional Materials
Author: Rafik Addou
Publisher: Elsevier
Total Pages: 434
Release: 2022-02-14
Genre: Technology & Engineering
ISBN: 032390310X

Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials

Two-Dimensional Optical Spectroscopy

Two-Dimensional Optical Spectroscopy
Author: Minhaeng Cho
Publisher: CRC Press
Total Pages: 396
Release: 2009-06-16
Genre: Medical
ISBN: 1420084305

Two-Dimensional Optical Spectroscopy discusses the principles and applications of newly emerging two-dimensional vibrational and optical spectroscopy techniques. It provides a detailed account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy. It also bridges the gap between the formal developm

Handbook of Organic Materials for Optical and (Opto)Electronic Devices

Handbook of Organic Materials for Optical and (Opto)Electronic Devices
Author: Oksana Ostroverkhova
Publisher: Elsevier
Total Pages: 832
Release: 2013-08-31
Genre: Technology & Engineering
ISBN: 0857098764

Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. - Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials - Discusses their applications in different devices including solar cells, LEDs and electronic memory devices - An essential technical resource for physicists, chemists, electrical engineers and materials scientists

2D Semiconductor Materials and Devices

2D Semiconductor Materials and Devices
Author: Dongzhi Chi
Publisher: Elsevier
Total Pages: 339
Release: 2019-10-19
Genre: Technology & Engineering
ISBN: 0128165898

2D Semiconductor Materials and Devices reviews the basic science and state-of-art technology of 2D semiconductor materials and devices. Chapters discuss the basic structure and properties of 2D semiconductor materials, including both elemental (silicene, phosphorene) and compound semiconductors (transition metal dichalcogenide), the current growth and characterization methods of these 2D materials, state-of-the-art devices, and current and potential applications. - Reviews a broad range of emerging 2D electronic materials beyond graphene, including silicene, phosphorene and compound semiconductors - Provides an in-depth review of material properties, growth and characterization aspects—topics that could enable applications - Features contributions from the leading experts in the field

Second Harmonic And Sum-frequency Spectroscopy: Basics And Applications

Second Harmonic And Sum-frequency Spectroscopy: Basics And Applications
Author: Yuen Ron Shen
Publisher: World Scientific
Total Pages: 401
Release: 2023-02-17
Genre: Science
ISBN: 9811262292

Optical second harmonic and sum-frequency generation has evolved into a useful spectroscopic tool for material characterization, especially as a viable and powerful technique for probing surfaces and interfaces. This book serves as an introduction on the technique. It provides a comprehensible description on the basics of the technique and gives detailed accounts with illustrating examples on the wide range of applications of the technique. It clearly points out the unique capabilities of the technique as a spectroscopic tool for studies of bulk and interface structures in different disciplines.This book is an updated version of an earlier book on the same subject, but it puts more emphasis on physical concepts and description. It underscores recent advances of sum-frequency spectroscopy at the technical front as well as over its wide range of applications, with the author's perspective in each area. Most chapters end with a section of summary and prospects that hopefully can help stimulate interest to further develop the technique and explore possibilities of applying the technique.