Introduction to Probability

Introduction to Probability
Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
Total Pages: 548
Release: 2021-11-24
Genre: Mathematics
ISBN: 1118548558

INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.

Probability Models and Applications

Probability Models and Applications
Author: Ingram Olkin
Publisher: Macmillan College
Total Pages: 715
Release: 1994-01-01
Genre: Mathematics
ISBN: 9780023892202

This text promotes cross-disciplinary research into the modelling of the ever increasing complex data involved in scientific and technological research. It shows where and how to apply probability models to real phenomena and how to prepare the tools necessary for such applications.

Introduction to Probability Models

Introduction to Probability Models
Author: Sheldon M. Ross
Publisher: Academic Press
Total Pages: 801
Release: 2006-12-11
Genre: Mathematics
ISBN: 0123756871

Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics

Applied Probability Models with Optimization Applications

Applied Probability Models with Optimization Applications
Author: Sheldon M. Ross
Publisher: Courier Corporation
Total Pages: 226
Release: 2013-04-15
Genre: Mathematics
ISBN: 0486318648

Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.

Probability Models

Probability Models
Author: John Haigh
Publisher: Springer Science & Business Media
Total Pages: 296
Release: 2013-07-04
Genre: Mathematics
ISBN: 144715343X

The purpose of this book is to provide a sound introduction to the study of real-world phenomena that possess random variation. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability, such as that of a dice or cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. This textbook contains many worked examples and several chapters have been updated and expanded for the second edition. Some mathematical knowledge is assumed. The reader should have the ability to work with unions, intersections and complements of sets; a good facility with calculus, including integration, sequences and series; and appreciation of the logical development of an argument. Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics.

Introduction to Probability Models

Introduction to Probability Models
Author: Sheldon M. Ross
Publisher: Elsevier
Total Pages: 801
Release: 2007
Genre: Probabilities
ISBN: 0123736358

Rosss classic bestseller has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.

Interpreting Probability Models

Interpreting Probability Models
Author: Tim Futing Liao
Publisher: SAGE
Total Pages: 100
Release: 1994-06-30
Genre: Mathematics
ISBN: 9780803949997

What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.

Probability

Probability
Author: Gregory K. Miller
Publisher: Wiley-Interscience
Total Pages: 496
Release: 2006-08-25
Genre: Mathematics
ISBN:

Improve Your Probability of Mastering This Topic This book takes an innovative approach to calculus-based probability theory, considering it within a framework for creating models of random phenomena. The author focuses on the synthesis of stochastic models concurrent with the development of distribution theory while also introducing the reader to basic statistical inference. In this way, the major stochastic processes are blended with coverage of probability laws, random variables, and distribution theory, equipping the reader to be a true problem solver and critical thinker. Deliberately conversational in tone, Probability is written for students in junior- or senior-level probability courses majoring in mathematics, statistics, computer science, or engineering. The book offers a lucid and mathematicallysound introduction to how probability is used to model random behavior in the natural world. The text contains the following chapters: Modeling Sets and Functions Probability Laws I: Building on the Axioms Probability Laws II: Results of Conditioning Random Variables and Stochastic Processes Discrete Random Variables and Applications in Stochastic Processes Continuous Random Variables and Applications in Stochastic Processes Covariance and Correlation Among Random Variables Included exercises cover a wealth of additional concepts, such as conditional independence, Simpson's paradox, acceptance sampling, geometric probability, simulation, exponential families of distributions, Jensen's inequality, and many non-standard probability distributions.

Models for Probability and Statistical Inference

Models for Probability and Statistical Inference
Author: James H. Stapleton
Publisher: John Wiley & Sons
Total Pages: 466
Release: 2007-12-14
Genre: Mathematics
ISBN: 0470183403

This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.