Probability Distributions On Banach Spaces
Download Probability Distributions On Banach Spaces full books in PDF, epub, and Kindle. Read online free Probability Distributions On Banach Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : N Vakhania |
Publisher | : Springer Science & Business Media |
Total Pages | : 507 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 940093873X |
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Author | : N Vakhania |
Publisher | : Springer Science & Business Media |
Total Pages | : 518 |
Release | : 1987-10-31 |
Genre | : Mathematics |
ISBN | : 9789027724960 |
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Author | : Lev B. Klebanov |
Publisher | : Karolinum Press, Charles University |
Total Pages | : 0 |
Release | : 2006-04 |
Genre | : Distribution (Probability theory) |
ISBN | : 9788024611525 |
The book focuses on probability metrics suitable for the characterization of random variables in Hilbert or Banach space. It provides details of various stochastic processes, such as testing non-deterministic statistical hypotheses, characterization of probability distribution or constructing multidimensional test for two selections. The book is published in the English language.
Author | : Roman Vershynin |
Publisher | : Cambridge University Press |
Total Pages | : 299 |
Release | : 2018-09-27 |
Genre | : Business & Economics |
ISBN | : 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Author | : P. Wojtaszczyk |
Publisher | : Cambridge University Press |
Total Pages | : 400 |
Release | : 1996-08 |
Genre | : Mathematics |
ISBN | : 9780521566759 |
This book is intended to be used with graduate courses in Banach space theory.
Author | : Nikolaĭ Nikolaevich Vakhanii͡a |
Publisher | : North-Holland |
Total Pages | : 152 |
Release | : 1981 |
Genre | : Mathematics |
ISBN | : |
Author | : Anatole Beck |
Publisher | : Springer |
Total Pages | : 291 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540382569 |
Author | : Svetlozar T. Rachev |
Publisher | : Springer Science & Business Media |
Total Pages | : 616 |
Release | : 2013-01-04 |
Genre | : Mathematics |
ISBN | : 1461448697 |
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute—Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)
Author | : Wojbor A. Woyczynski |
Publisher | : CRC Press |
Total Pages | : 299 |
Release | : 2018-10-12 |
Genre | : Mathematics |
ISBN | : 0429868820 |
Geometry and Martingales in Banach Spaces provides a compact exposition of the results explaining the interrelations existing between the metric geometry of Banach spaces and the theory of martingales, and general random vectors with values in those Banach spaces. Geometric concepts such as dentability, uniform smoothness, uniform convexity, Beck convexity, etc. turn out to characterize asymptotic behavior of martingales with values in Banach spaces.
Author | : Michel Ledoux |
Publisher | : Springer Science & Business Media |
Total Pages | : 493 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3642202128 |
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.