Principles of Statistical Data Handling

Principles of Statistical Data Handling
Author: Fred Davidson
Publisher:
Total Pages: 319
Release: 1996
Genre: Educational statistics
ISBN: 9781483348902

This volume demonstrates how to input, manipulate and debug data to make substantive analysis easier and more accurate. Using a series of principles, universal concepts that apply no matter what the data-gathering context or computer software, Fred Davidson presents a situation or a problem, suggests how it might be resolved and demonstrates the implementation of each principle as it appears in the command languages of SAS and SPSS.

Principles of Statistical Data Handling

Principles of Statistical Data Handling
Author: Fred Davidson
Publisher: SAGE Publications, Incorporated
Total Pages: 344
Release: 1996-04-09
Genre: Education
ISBN:

Principles of Statistical Data Handling is designed to help readers understand the principles of data handling so that they can make better use of computer data in research or study.

Statistical Design - Chemometrics

Statistical Design - Chemometrics
Author: Roy E Bruns
Publisher: Elsevier
Total Pages: 423
Release: 2006-01-27
Genre: Education
ISBN: 0080462138

Statistical Design-Chemometrics is applicable to researchers and professionals who wish to perform experiments in chemometrics and carry out analysis of the data in the most efficient way possible. The language is clear, direct and oriented towards real applications. The book provides 106 exercises with answers to accompany the study of theoretical principles. Forty two cases studies with real data are presented showing designs and the complete statistical analyses for problems in the areas chromatography, electroanalytical and electrochemistry, calibration, polymers, gas adsorption, semiconductors, food technology, biotechnology, photochemistry, catalysis, detergents and ceramics. These studies serve as a guide that the reader can use to perform correct data analyses.-Provides 42 case studies containing step-by-step descriptions of calculational procedures that can be applied to most real optimization problems-Contains 106 theoretical exercises to test individual learning and to provide classroom exercises and material for written tests and exams-Written in a language that facilitates learning for physical and biological scientists and engineers-Takes a practical approach for those involved in industrial optimization problems

Principles of Data Management and Presentation

Principles of Data Management and Presentation
Author: John P. Hoffmann
Publisher: Univ of California Press
Total Pages: 282
Release: 2017-07-03
Genre: Reference
ISBN: 0520289943

Why research? -- Developing research questions -- Data -- Principles of data management -- Finding and using secondary data -- Primary and administrative data -- Working with missing data -- Principles of data presentation -- Designing tables for data presentations -- Designing graphics for data presentations

Statistical Confidentiality

Statistical Confidentiality
Author: George T. Duncan
Publisher: Springer Science & Business Media
Total Pages: 205
Release: 2011-03-22
Genre: Social Science
ISBN: 144197802X

Because statistical confidentiality embraces the responsibility for both protecting data and ensuring its beneficial use for statistical purposes, those working with personal and proprietary data can benefit from the principles and practices this book presents. Researchers can understand why an agency holding statistical data does not respond well to the demand, “Just give me the data; I’m only going to do good things with it.” Statisticians can incorporate the requirements of statistical confidentiality into their methodologies for data collection and analysis. Data stewards, caught between those eager for data and those who worry about confidentiality, can use the tools of statistical confidentiality toward satisfying both groups. The eight chapters lay out the dilemma of data stewardship organizations (such as statistical agencies) in resolving the tension between protecting data from snoopers while providing data to legitimate users, explain disclosure risk and explore the types of attack that a data snooper might mount, present the methods of disclosure risk assessment, give techniques for statistical disclosure limitation of both tabular data and microdata, identify measures of the impact of disclosure limitation on data utility, provide restricted access methods as administrative procedures for disclosure control, and finally explore the future of statistical confidentiality.

A Data Scientist's Guide to Acquiring, Cleaning, and Managing Data in R

A Data Scientist's Guide to Acquiring, Cleaning, and Managing Data in R
Author: Samuel E. Buttrey
Publisher: John Wiley & Sons
Total Pages: 310
Release: 2017-12-18
Genre: Computers
ISBN: 1119080029

The only how-to guide offering a unified, systemic approach to acquiring, cleaning, and managing data in R Every experienced practitioner knows that preparing data for modeling is a painstaking, time-consuming process. Adding to the difficulty is that most modelers learn the steps involved in cleaning and managing data piecemeal, often on the fly, or they develop their own ad hoc methods. This book helps simplify their task by providing a unified, systematic approach to acquiring, modeling, manipulating, cleaning, and maintaining data in R. Starting with the very basics, data scientists Samuel E. Buttrey and Lyn R. Whitaker walk readers through the entire process. From what data looks like and what it should look like, they progress through all the steps involved in getting data ready for modeling. They describe best practices for acquiring data from numerous sources; explore key issues in data handling, including text/regular expressions, big data, parallel processing, merging, matching, and checking for duplicates; and outline highly efficient and reliable techniques for documenting data and recordkeeping, including audit trails, getting data back out of R, and more. The only single-source guide to R data and its preparation, it describes best practices for acquiring, manipulating, cleaning, and maintaining data Begins with the basics and walks readers through all the steps necessary to get data ready for the modeling process Provides expert guidance on how to document the processes described so that they are reproducible Written by seasoned professionals, it provides both introductory and advanced techniques Features case studies with supporting data and R code, hosted on a companion website A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R is a valuable working resource/bench manual for practitioners who collect and analyze data, lab scientists and research associates of all levels of experience, and graduate-level data mining students.

Statistical Data Analysis Explained

Statistical Data Analysis Explained
Author: Clemens Reimann
Publisher: John Wiley & Sons
Total Pages: 380
Release: 2011-08-31
Genre: Science
ISBN: 1119965284

Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.

Analysis in Nutrition Research

Analysis in Nutrition Research
Author: George Pounis
Publisher: Academic Press
Total Pages: 416
Release: 2018-10-19
Genre: Technology & Engineering
ISBN: 0128145579

Analysis in Nutrition Research: Principles of Statistical Methodology and Interpretation of the Results describes, in a comprehensive manner, the methodologies of quantitative analysis of data originating specifically from nutrition studies. The book summarizes various study designs in nutrition research, research hypotheses, the proper management of dietary data, and analytical methodologies, with a specific focus on how to interpret the results of any given study. In addition, it provides a comprehensive overview of the methodologies used in study design and the management and analysis of collected data, paying particular attention to all of the available, modern methodologies and techniques. Users will find an overview of the recent challenges and debates in the field of nutrition research that will define major research hypotheses for research in the next ten years. Nutrition scientists, researchers and undergraduate and postgraduate students will benefit from this thorough publication on the topic. - Provides a comprehensive presentation of the various study designs applied in nutrition research - Contains a parallel description of statistical methodologies used for each study design - Presents data management methodologies used specifically in nutrition research - Describes methodologies using both a theoretical and applied approach - Illustrates modern techniques in dietary pattern analysis - Summarizes current topics in the field of nutrition research that will define major research hypotheses for research in the next ten years

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
Author: Peter Bruce
Publisher: "O'Reilly Media, Inc."
Total Pages: 322
Release: 2017-05-10
Genre: Computers
ISBN: 1491952911

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

The Basic Practice of Statistics

The Basic Practice of Statistics
Author: David S. Moore
Publisher: Palgrave Macmillan
Total Pages: 975
Release: 2010
Genre: Mathematics
ISBN: 1429224266

This is a clear and innovative overview of statistics which emphasises major ideas, essential skills and real-life data. The organisation and design has been improved for the fifth edition, coverage of engaging, real-world topics has been increased and content has been updated to appeal to today's trends and research.