Principles of Random Walk

Principles of Random Walk
Author: Frank Spitzer
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475742290

This book is devoted exclusively to a very special class of random processes, namely, to random walk on the lattice points of ordinary Euclidian space. The author considers this high degree of specialization worthwhile because the theory of such random walks is far more complete than that of any larger class of Markov chains. Almost 100 pages of examples and problems are included.

Principles of Random Walk

Principles of Random Walk
Author: Frank Spitzer
Publisher: Springer Science & Business Media
Total Pages: 438
Release: 2001
Genre: Mathematics
ISBN: 9780387951546

More than 100 pages of examples and problems illustrate and clarify the presentation."--BOOK JACKET.

Asymptotic Analysis of Random Walks

Asymptotic Analysis of Random Walks
Author: A. A. Borovkov
Publisher: Cambridge University Press
Total Pages: 437
Release: 2020-10-29
Genre: Mathematics
ISBN: 1108901204

This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.

Random Walk and the Heat Equation

Random Walk and the Heat Equation
Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
Total Pages: 170
Release: 2010-11-22
Genre: Mathematics
ISBN: 0821848291

The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

Statistical Mechanics and Random Walks

Statistical Mechanics and Random Walks
Author: Abram Skogseid
Publisher:
Total Pages: 0
Release: 2011-10
Genre: Engineering mathematics
ISBN: 9781614709664

In this book, the authors gather and present topical research in the study of statistical mechanics and random walk principles and applications. Topics discussed in this compilation include the application of stochastic approaches to modelling suspension flow in porous media; subordinated Gaussian processes; random walk models in biophysical science; non-equilibrium dynamics and diffusion processes; global random walk algorithm for diffusion processes and application of random walks for the analysis of graphs, musical composition and language phylogeny.

A Random Walk Down Wall Street

A Random Walk Down Wall Street
Author: Burton Gordon Malkiel
Publisher: W. W. Norton & Company
Total Pages: 422
Release: 2003
Genre: Business & Economics
ISBN: 9780393057829

An informative guide to successful investing, offering a vast array of advice on how investors can tilt the odds in their favour.

Random Walks in Biology

Random Walks in Biology
Author: Howard C. Berg
Publisher: Princeton University Press
Total Pages: 166
Release: 2018-11-20
Genre: Science
ISBN: 1400820022

This book is a lucid, straightforward introduction to the concepts and techniques of statistical physics that students of biology, biochemistry, and biophysics must know. It provides a sound basis for understanding random motions of molecules, subcellular particles, or cells, or of processes that depend on such motion or are markedly affected by it. Readers do not need to understand thermodynamics in order to acquire a knowledge of the physics involved in diffusion, sedimentation, electrophoresis, chromatography, and cell motility--subjects that become lively and immediate when the author discusses them in terms of random walks of individual particles.

Random Walks and Heat Kernels on Graphs

Random Walks and Heat Kernels on Graphs
Author: M. T. Barlow
Publisher: Cambridge University Press
Total Pages: 239
Release: 2017-02-23
Genre: Mathematics
ISBN: 1107674425

Useful but hard-to-find results enrich this introduction to the analytic study of random walks on infinite graphs.

A Non-Random Walk Down Wall Street

A Non-Random Walk Down Wall Street
Author: Andrew W. Lo
Publisher: Princeton University Press
Total Pages: 449
Release: 2011-11-14
Genre: Business & Economics
ISBN: 1400829097

For over half a century, financial experts have regarded the movements of markets as a random walk--unpredictable meanderings akin to a drunkard's unsteady gait--and this hypothesis has become a cornerstone of modern financial economics and many investment strategies. Here Andrew W. Lo and A. Craig MacKinlay put the Random Walk Hypothesis to the test. In this volume, which elegantly integrates their most important articles, Lo and MacKinlay find that markets are not completely random after all, and that predictable components do exist in recent stock and bond returns. Their book provides a state-of-the-art account of the techniques for detecting predictabilities and evaluating their statistical and economic significance, and offers a tantalizing glimpse into the financial technologies of the future. The articles track the exciting course of Lo and MacKinlay's research on the predictability of stock prices from their early work on rejecting random walks in short-horizon returns to their analysis of long-term memory in stock market prices. A particular highlight is their now-famous inquiry into the pitfalls of "data-snooping biases" that have arisen from the widespread use of the same historical databases for discovering anomalies and developing seemingly profitable investment strategies. This book invites scholars to reconsider the Random Walk Hypothesis, and, by carefully documenting the presence of predictable components in the stock market, also directs investment professionals toward superior long-term investment returns through disciplined active investment management.