Principles of Optical Data Processing for Engineers

Principles of Optical Data Processing for Engineers
Author: Arnold Roy Shulman
Publisher:
Total Pages: 132
Release: 1970
Genre: Optical data processing
ISBN:

This document is written primarily for engineers as a self-teaching text on optical data processing. Fundamentals are reviewed and expanded upon to give a clear understanding and working knowledge of the entire subject, including: optical spectrum analysis, optical correlation, photographic film characteristics, and holography. In addition, this document introduces the use of mathematics to describe the various optical operations, thus forming a background for understanding more advanced works in the field.

Optical Data Storage

Optical Data Storage
Author: Erwin R. Meinders
Publisher: Springer Science & Business Media
Total Pages: 181
Release: 2006-11-15
Genre: Technology & Engineering
ISBN: 1402042175

This is an overview of recording principles, materials aspects, and applications of rewritable optical storage. Elements of data recording, including mark formation, eraseability, direct overwrite strategies, data quality and data stability are explained and extensively discussed. Throughout the book, a mark formation model is described and used to back-up measurement results and support the discussed applications. High-speed and dual-layer recording are analyzed in depth, with proposals to achieve higher performance.

Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application

Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application
Author: Jianjun Yu
Publisher: Springer Nature
Total Pages: 572
Release: 2020-07-06
Genre: Technology & Engineering
ISBN: 981153098X

This book presents the principles and applications of optical fiber communication based on digital signal processing (DSP) for both single and multi-carrier modulation signals. In the context of single carrier modulation, it describes DSP for linear and nonlinear optical fiber communication systems, discussing all-optical Nyquist modulation signal generation and processing, and how to use probabilistic and geometrical shaping to improve the transmission performance. For multi-carrier modulation, it examines DSP-based OFDM signal generation and detection and presents 4D and high-order modulation formats. Lastly, it demonstrates how to use artificial intelligence in optical fiber communication. As such it is a useful resource for students, researches and engineers in the field of optical fiber communication.

Nonlinear Optical Systems

Nonlinear Optical Systems
Author: Le Nguyen Binh
Publisher: CRC Press
Total Pages: 465
Release: 2012-03-05
Genre: Science
ISBN: 1439845476

Nonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing is a simplified overview of the evolution of technology associated with nonlinear systems and advanced signal processing. This book’s coverage ranges from fundamentals to phenomena to the most cutting-edge aspects of systems for next-generation biomedical monitoring and nonlinear optical transmission. The authors address how these systems are applied through photonic signal processing in contemporary optical systems for communications and/or laser systems. They include a concise but sufficient explanation of mathematical representation of nonlinear equations to provide insight into nonlinear dynamics at different phases. The book also describes advanced aspects of solitons and bound solitons for passive- and active-mode locked fiber lasers, in which higher-order differential equations can be employed to represent the dynamics of amplitude evolution in the current or voltages of lightwaves in such systems. Covering a wide range of topics, this book: Introduces nonlinear systems and some mathematical representations, particularly the routes to chaos and bifurcation Describes nonlinear fiber lightwave lasing systems Covers nonlinear phenomena in fiber lasers, including both passive and active energy storage cavities Experimentally and theoretically demonstrates soliton pulses, in which lightwaves are the carrier under their envelopes Assembles and demonstrates sequences of both single and multiple solitons in a group and then assesses their dynamics in detail Examines the evolution of bound solitons, which are transmitted through single-mode optical fibers that compose a phase variation system This text outlines the theory and techniques used in nonlinear physics and applications for physical systems. It also illustrates the use of MATLAB® and Simulink® computer models and processing techniques for nonlinear signals. Building on readers’ newly acquired fundamental understanding of nonlinear systems and associated signal processing, the book then demonstrates the use of such applications in real-world, practical environments.

Handbook of Optical Engineering

Handbook of Optical Engineering
Author: Daniel Malacara
Publisher: CRC Press
Total Pages: 1008
Release: 2001-05-31
Genre: Science
ISBN: 9780203908266

This handbook explains principles, processes, methods, and procedures of optical engineering in a concise and practical way. It emphasizes fundamental approaches and provides useful formulas and step-by-step worked-out examples to demonstrate applications and clarify calculation methods. The book covers refractive, reflective, and diffractive optical components; lens optical devices; modern fringe pattern analysis; optical metrology; Fourier optics and optical image processing; electro-optical and acousto-optical devices; spatial and spectral filters; optical fibers and accessories; optical fabrication; and more. It includes over 2,000 tables, flow charts, graphs, schematics, drawings, photographs, and mathematical expressions.

Engineering Thin Films and Nanostructures with Ion Beams

Engineering Thin Films and Nanostructures with Ion Beams
Author: Emile Knystautas
Publisher: CRC Press
Total Pages: 362
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 1351836757

While ion-beam techniques have been used to create thin films in the semiconductor industry for several decades, these methods have been too costly for other surface treatment applications. However, as manufacturing devices become increasingly smaller, the use of a directed-energy ion beam is finding novel industrial applications that require the custom tailoring of new materials and devices, including magnetic storage devices, photonics, opto-electronics, and molecular transport. Engineering Thin Films and Nanostructures with Ion Beams offers a thorough narrative of the recent advances that make this technology relevant to current and future applications. Featuring internationally recognized researchers, the book compiles their expertise in a multidimensional source that: Highlights the mechanisms and visual evidence of the effects of single-ion impacts on metallic surfaces Considers how ion-beam techniques can help achieve higher disk-drive densities Introduces gas-cluster ion-beam technology and reviews its precedents Explains how ion beams are used to aggregate metals and semiconductors into nanoclusters with nonlinear optical properties Addresses current challenges in building equipment needed to produce nanostructures in an industrial setting Examines the combination of ion-beam techniques, particularly with physical vapor deposition Delineates the fabrication of nanopillars, nanoflowers, and interconnected nanochannels in three dimensions by using atomic shadowing techniques Illustrates the production of nanopores of varying dimensions in polymer films, alloys, and superconductors using ion-beam irradiation Shows how fingerprints can be made more reliable as forensic evidence by recoil-mixing them into the substrate using ion beams From the basics of the ion-beam modification of materials to state-of-the-art applications, Engineering Th