Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning
Author: Jon Doyle
Publisher: Morgan Kaufmann
Total Pages: 680
Release: 1994
Genre: Computers
ISBN:

The proceedings of KR '94 comprise 55 papers on topics including deduction an search, description logics, theories of knowledge and belief, nonmonotonic reasoning and belief revision, action and time, planning and decision-making and reasoning about the physical world, and the relations between KR

Foundations of Knowledge Representation and Reasoning

Foundations of Knowledge Representation and Reasoning
Author: Gerhard Lakemeyer
Publisher: Springer Science & Business Media
Total Pages: 372
Release: 1994-06-28
Genre: Computers
ISBN: 9783540581079

The papers collected in this book cover a wide range of topics in asymptotic statistics. In particular up-to-date-information is presented in detection of systematic changes, in series of observation, in robust regression analysis, in numerical empirical processes and in related areas of actuarial sciences and mathematical programming. The emphasis is on theoretical contributions with impact on statistical methods employed in the analysis of experiments and observations by biometricians, econometricians and engineers.

Handbook of Knowledge Representation

Handbook of Knowledge Representation
Author: Frank van Harmelen
Publisher: Elsevier
Total Pages: 1035
Release: 2008-01-08
Genre: Computers
ISBN: 0080557023

Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily

FGCS '92

FGCS '92
Author:
Publisher: IOS Press
Total Pages: 788
Release: 1992
Genre: Computer architecture
ISBN: 9784274077241

The Logic of Knowledge Bases

The Logic of Knowledge Bases
Author: Hector J. Levesque
Publisher: MIT Press
Total Pages: 316
Release: 2001-02-15
Genre: Computers
ISBN: 9780262263498

This book describes in detail the relationship between symbolic representations of knowledge and abstract states of knowledge, exploring along the way the foundations of knowledge, knowledge bases, knowledge-based systems, and knowledge representation and reasoning. The idea of knowledge bases lies at the heart of symbolic, or "traditional," artificial intelligence. A knowledge-based system decides how to act by running formal reasoning procedures over a body of explicitly represented knowledge—a knowledge base. The system is not programmed for specific tasks; rather, it is told what it needs to know and expected to infer the rest. This book is about the logic of such knowledge bases. It describes in detail the relationship between symbolic representations of knowledge and abstract states of knowledge, exploring along the way the foundations of knowledge, knowledge bases, knowledge-based systems, and knowledge representation and reasoning. Assuming some familiarity with first-order predicate logic, the book offers a new mathematical model of knowledge that is general and expressive yet more workable in practice than previous models. The book presents a style of semantic argument and formal analysis that would be cumbersome or completely impractical with other approaches. It also shows how to treat a knowledge base as an abstract data type, completely specified in an abstract way by the knowledge-level operations defined over it.

Transactions on Large-Scale Data- and Knowledge-Centered Systems VI

Transactions on Large-Scale Data- and Knowledge-Centered Systems VI
Author: Abdelkader Hameurlain
Publisher: Springer
Total Pages: 268
Release: 2012-09-22
Genre: Computers
ISBN: 3642341799

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the sixth issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains eight extended and revised versions of papers selected from those presented at DEXA 2011. Topics covered include skyline queries, probabilistic logics and reasoning, theory of conceptual modeling, prediction in networks of moving objects, validation of XML integrity constraints, management of loosely structured multi-dimensional data, data discovery in the presence of annotations, and quality ranking for Web articles.

A Guided Tour of Artificial Intelligence Research

A Guided Tour of Artificial Intelligence Research
Author: Pierre Marquis
Publisher: Springer Nature
Total Pages: 808
Release: 2020-05-08
Genre: Technology & Engineering
ISBN: 3030061647

The purpose of this book is to provide an overview of AI research, ranging from basic work to interfaces and applications, with as much emphasis on results as on current issues. It is aimed at an audience of master students and Ph.D. students, and can be of interest as well for researchers and engineers who want to know more about AI. The book is split into three volumes: - the first volume brings together twenty-three chapters dealing with the foundations of knowledge representation and the formalization of reasoning and learning (Volume 1. Knowledge representation, reasoning and learning) - the second volume offers a view of AI, in fourteen chapters, from the side of the algorithms (Volume 2. AI Algorithms) - the third volume, composed of sixteen chapters, describes the main interfaces and applications of AI (Volume 3. Interfaces and applications of AI). Implementing reasoning or decision making processes requires an appropriate representation of the pieces of information to be exploited. This first volume starts with a historical chapter sketching the slow emergence of building blocks of AI along centuries. Then the volume provides an organized overview of different logical, numerical, or graphical representation formalisms able to handle incomplete information, rules having exceptions, probabilistic and possibilistic uncertainty (and beyond), as well as taxonomies, time, space, preferences, norms, causality, and even trust and emotions among agents. Different types of reasoning, beyond classical deduction, are surveyed including nonmonotonic reasoning, belief revision, updating, information fusion, reasoning based on similarity (case-based, interpolative, or analogical), as well as reasoning about actions, reasoning about ontologies (description logics), argumentation, and negotiation or persuasion between agents. Three chapters deal with decision making, be it multiple criteria, collective, or under uncertainty. Two chapters cover statistical computational learning and reinforcement learning (other machine learning topics are covered in Volume 2). Chapters on diagnosis and supervision, validation and explanation, and knowledge base acquisition complete the volume.