Principles of Human Organs-on-Chips

Principles of Human Organs-on-Chips
Author: Masoud Mozafari
Publisher: Woodhead Publishing
Total Pages: 492
Release: 2023-01-17
Genre: Technology & Engineering
ISBN: 0128236108

Principles of Human Organs-on-Chips covers all aspects of microfluidic organ-on-a-chip systems, from fabrication to application and commercialization. Organ-on-a-chip models are created to mimic the structural, microenvironmental and physiological functions of human organs, providing the potential to bypass some cell and animal testing methods. This is a useful platform with widespread applications, frequently in drug screening and pathological studies. This book offers a comprehensive and authoritative reference on microfluidic organs-on-chips, spanning all key aspects from fabrication methods, cell culture systems and cell-based analysis, to dedicated chapters on specific tissue types and their associated organ-on-a-chip models, as well as their use as disease models, drug screening platforms and more. Principles of Human Organs-on-Chips helps materials scientists and biomedical engineers to better understand the specific requirements and challenges in the design and fabrication of organ-on-a-chip devices. This book also bridges the knowledge gap between medical device design and subsequent clinical applications, allowing medical professionals to easily learn about related engineering concepts and techniques. - Describes various microfluidic systems and fabrication methods - Covers models and applications for a broad range of tissue types, including liver, eye, immune, gut, and more - Offers an interdisciplinary approach, combining engineering techniques and clinical applications of organs-on-chips

Lab-on-a-Chip Fabrication and Application

Lab-on-a-Chip Fabrication and Application
Author: Margarita Stoytcheva
Publisher: BoD – Books on Demand
Total Pages: 210
Release: 2016-06-29
Genre: Science
ISBN: 9535124579

The necessity of on-site, fast, sensitive, and cheap complex laboratory analysis, associated with the advances in the microfabrication technologies and the microfluidics, made it possible for the creation of the innovative device lab-on-a-chip (LOC), by which we would be able to scale a single or multiple laboratory processes down to a chip format. The present book is dedicated to the LOC devices from two points of view: LOC fabrication and LOC application.

Basic Concepts on 3D Cell Culture

Basic Concepts on 3D Cell Culture
Author: Cornelia Kasper
Publisher: Springer Nature
Total Pages: 252
Release: 2021-06-09
Genre: Medical
ISBN: 3030667499

This textbook shall introduce the students to 3D cell culture approaches and applications. An overview on existing techniques and equipment is provided and insight into various aspects and challenges that researchers need to consider and face during culture of 3D cells is given. The reader will learn the importance of physiological cell, tissue and organ models and gains important knowledge on 3D analytics. This textbook deepens selected aspects of the textbook “Cell Culture Technology”, which also is published in this series, while offering extended insight into 3D cell culture. The concept of the textbook encompasses various lectures ranging from basics in cell cultivation, tissue engineering, biomaterials and biocompatibility, in vitro test systems and regenerative medicine. The textbook addresses Master- and PhD students interested and/or working in the field of modern cell culture applications and will support the understanding of the essential strategies in 3D cell culture and waken awareness for the potentials and challenges of this application.

Microfluidics and Lab-on-a-Chip

Microfluidics and Lab-on-a-Chip
Author: Andreas Manz
Publisher: Royal Society of Chemistry
Total Pages: 307
Release: 2020-09-24
Genre: Science
ISBN: 1782628339

Responding to the need for an affordable, easy-to-read textbook that introduces microfluidics to undergraduate and postgraduate students, this concise book will provide a broad overview of the important theoretical and practical aspects of microfluidics and lab-on-a-chip, as well as its applications.

Precision Medicine for Investigators, Practitioners and Providers

Precision Medicine for Investigators, Practitioners and Providers
Author: Joel Faintuch
Publisher: Academic Press
Total Pages: 646
Release: 2019-11-16
Genre: Science
ISBN: 0128191791

Precision Medicine for Investigators, Practitioners and Providers addresses the needs of investigators by covering the topic as an umbrella concept, from new drug trials to wearable diagnostic devices, and from pediatrics to psychiatry in a manner that is up-to-date and authoritative. Sections include broad coverage of concerning disease groups and ancillary information about techniques, resources and consequences. Moreover, each chapter follows a structured blueprint, so that multiple, essential items are not overlooked. Instead of simply concentrating on a limited number of extensive and pedantic coverages, scholarly diagrams are also included. - Provides a three-pronged approach to precision medicine that is focused on investigators, practitioners and healthcare providers - Covers disease groups and ancillary information about techniques, resources and consequences - Follows a structured blueprint, ensuring essential chapters items are not overlooked

Biochip Technology

Biochip Technology
Author: Jing Cheng
Publisher: CRC Press
Total Pages: 453
Release: 2003-09-02
Genre: Science
ISBN: 0203305043

Biochip technology has experienced explosive growth in recent years and Biochip technology describes the basic manufacturing and fabrication processes and the current range of applications of these chips. Top scientists from the biochip industry and related areas explain the diverse applications of biochips in gene sequencing, expression monitoring, disease diagnosis, tumor examination, ligand assay and drug discovery.

Tumor Organoids

Tumor Organoids
Author: Shay Soker
Publisher: Humana Press
Total Pages: 225
Release: 2017-10-20
Genre: Medical
ISBN: 3319605119

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.

Hidden in Plain Sight

Hidden in Plain Sight
Author: Albert Folch
Publisher: MIT Press
Total Pages: 353
Release: 2022-04-26
Genre: Technology & Engineering
ISBN: 026204689X

Stories behind essential microfluidic devices, from the inkjet printer to DNA sequencing chip. Hidden from view, microfluidics underlies a variety of devices that are essential to our lives, from inkjet printers to glucometers for the monitoring of diabetes. Microfluidics—which refers to the technology of miniature fluidic devices and the study of fluids at submillimeter levels—is invisible to most of us because it is hidden beneath ingenious user interfaces. In this book, Albert Folch, a leading researcher in microfluidics, describes the development and use of key microfluidic devices. He explains not only the technology but also the efforts, teams, places, and circumstances that enabled these inventions. Folch reports, for example, that the inkjet printer was one of the first microfluidic devices invented, and traces its roots back to nineteenth-century discoveries in the behavior of fluid jets. He also describes how rapid speed microfluidic DNA sequencers have enabled the sequencing of animal, plant, and microbial species genomes; organs on chips facilitate direct tests of drugs on human tissue, leapfrogging over the usual stage of animal testing; at-home pregnancy tests are based on clever microfluidic principles; microfluidics can be used to detect cancer cells in the early stages of metastasis; and the same technology that shoots droplets of ink on paper in inkjet printers enables 3D printers to dispense layers of polymers. Folch tells the stories behind these devices in an engaging style, accessible to nonspecialists. More than 100 color illustrations show readers amazing images of microfluids under the microscope.

Discovering the Brain

Discovering the Brain
Author: National Academy of Sciences
Publisher: National Academies Press
Total Pages: 195
Release: 1992-01-01
Genre: Medical
ISBN: 0309045290

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."

Principles of Regenerative Medicine

Principles of Regenerative Medicine
Author: Anthony Atala
Publisher: Academic Press
Total Pages: 1203
Release: 2010-12-16
Genre: Science
ISBN: 0123814235

Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs