Principles of Electric Machines and Power Electronics

Principles of Electric Machines and Power Electronics
Author: P. C. Sen
Publisher:
Total Pages: 632
Release: 1989-01-17
Genre: Technology & Engineering
ISBN:

An accessible introduction to all important aspects of electric machines, covering dc, induction, and synchronous machines. Also addresses modern techniques of control, power electronics, and applications. Exposition builds from first principles, making this book accessible to a wide audience. Contains a large number of problems and worked examples.

Principles of Electric Machines and Power Electronics

Principles of Electric Machines and Power Electronics
Author: P. C. Sen
Publisher: New York ; Toronto : J. Wiley
Total Pages: 648
Release: 1997
Genre: Technology & Engineering
ISBN:

This new edition combines the traditional areas of electric machinery with the latest in modern control and power electronics. It includes coverage of multi-machine systems, brushless motors and switched reluctance motors, as well as constant flux and constant current operation of induction motors. It also features additional material on new solid state devices such as Insulated Gate Bipolar Transistors and MOS-Controlled Thrysistors.

PRINCIPLES OF ELECTRIC MACHINES AND POWER ELECTRONICS

PRINCIPLES OF ELECTRIC MACHINES AND POWER ELECTRONICS
Author: P.C.Sen
Publisher: John Wiley & Sons
Total Pages: 642
Release: 2007
Genre:
ISBN: 9788126511013

Market_Desc: · Electrical Engineers· Students· Professors Special Features: · The book has the step by step presentation that allows readers to fully understand each topic before moving on to the next. About The Book: This text combines the traditional areas of electric machinery with the latest in modern control and power electronics. A large number of topics have been added and revised to include state of the art coverage. Multi-machine systems, brushless motors and switched reluctance motors are now covered, as well as constant flux and constant current operation of induction motors. Additional material has been added on new solid state devices such as Insulated Gate Bipolar Transistors and MOS-Controlled Thrysistors.

Basic Principles of Power Electronics

Basic Principles of Power Electronics
Author: Klemens Heumann
Publisher: Springer Science & Business Media
Total Pages: 313
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642826741

Power electronics became an identifiably separate area of electrical engineering with the invention of the thyristor about 30 years ago. The growing demand for controllability and conversion of electric energy has made this area increasingly important, which in turn has resulted in new device, circuit and control developments. In particular, new components, such as the GTO and power MOSFET, continue to extend power electronic technology to new applications. The technology embodied by the name "power electronics" is complex. It consists of both power level and signal level electronics, as well as thermal, mechanical, control, and protection systems. The power circuit, that part of the system actually processing energy, can be thought of as an amplifier around which is placed a closed loop control system. The goal of this book is to provide an easily understood exposition of the principles of power electronics. Common features of systems and their behavior are identified in order to facilitate understanding. Thyristor converters are distinguished and treated according to their mode of commutation. Circuits for various converters and their controls are presented, along with a description of ancillary circuits such as those required for snubbing and gate drives. Thermal and electrical properties of semiconductor power devices are discussed. The line-converter and converter-load interfaces are examined, leading to some general statements being made about energy transfer. Application areas are identified and categorized with respect to power and frequency ranges. The many tables presented in the book provide an easily used reference source.

Electric Power Principles

Electric Power Principles
Author: James L. Kirtley
Publisher: John Wiley & Sons
Total Pages: 408
Release: 2011-07-05
Genre: Technology & Engineering
ISBN: 1119957443

This innovative approach to the fundamentals of electric power provides the most rigorous, comprehensive and modern treatment available. To impart a thorough grounding in electric power systems, it begins with an informative discussion on per-unit normalizations, symmetrical components and iterative load flow calculations. Covering important topics within the power system, such as protection and DC transmission, this book looks at both traditional power plants and those used for extracting sustainable energy from wind and sunlight. With classroom-tested material, this book also presents: the principles of electromechanical energy conversion and magnetic circuits; synchronous machines - the most important generators of electric power; power electronics; induction and direct current electric motors. Homework problems with varying levels of difficulty are included at the end of each chapter, and an online solutions manual for tutors is available. A useful Appendix contains a review of elementary network theory. For senior undergraduate and postgraduate students studying advanced electric power systems as well as engineers re-training in this area, this textbook will be an indispensable resource. It will also benefit engineers in electronic power systems, power electronic systems, electric motors and generators, robotics and mechatronics. www.wiley.com/go/kirtley_electric

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives

Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives
Author: Marius Rosu
Publisher: John Wiley & Sons
Total Pages: 312
Release: 2017-12-18
Genre: Science
ISBN: 1119103444

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

Electrical Machines

Electrical Machines
Author: S. K. Sahdev
Publisher: Cambridge University Press
Total Pages: 979
Release: 2017-11-24
Genre: Technology & Engineering
ISBN: 1108431062

Offers key concepts of electrical machines embedded with solved examples, review questions, illustrations and open book questions.

Electric Machines and Drives

Electric Machines and Drives
Author: Shaahin Filizadeh
Publisher: CRC Press
Total Pages: 241
Release: 2013-02-20
Genre: Technology & Engineering
ISBN: 1439858071

Electric machines have a ubiquitous presence in our modern daily lives, from the generators that supply electricity to motors of all sizes that power countless applications. Providing a balanced treatment of the subject, Electric Machines and Drives: Principles, Control, Modeling, and Simulation takes a ground-up approach that emphasizes fundamental principles. The author carefully deploys physical insight, mathematical rigor, and computer simulation to clearly and effectively present electric machines and drive systems. Detailing the fundamental principles that govern electric machines and drives systems, this book: Describes the laws of induction and interaction and demonstrates their fundamental roles with numerous examples Explores dc machines and their principles of operation Discusses a simple dynamic model used to develop speed and torque control strategies Presents modeling, steady state based drives, and high-performance drives for induction machines, highlighting the underlying physics of the machine Includes coverage of modeling and high performance control of permanent magnet synchronous machines Highlights the elements of power electronics used in electric drive systems Examines simulation-based optimal design and numerical simulation of dynamical systems Suitable for a one semester class at the senior undergraduate or a graduate level, the text supplies simulation cases that can be used as a base and can be supplemented through simulation assignments and small projects. It includes end-of-chapter problems designed to pick up on the points presented in chapters and develop them further or introduce additional aspects. The book provides an understanding of the fundamental laws of physics upon which electric machines operate, allowing students to master the mathematical skills that their modeling and analysis requires.