Mechanical Theorem Proving in Geometries

Mechanical Theorem Proving in Geometries
Author: Wen-tsün Wu
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 1994-04-14
Genre: Computers
ISBN: 9783211825068

This book is a translation of Professor Wu’s seminal Chinese book of 1984 on Automated Geometric Theorem Proving. The translation was done by his former student Dongming Wang jointly with Xiaofan Jin so that authenticity is guaranteed. Meanwhile, automated geometric theorem proving based on Wu’s method of characteristic sets has become one of the fundamental, practically successful, methods in this area that has drastically enhanced the scope of what is computationally tractable in automated theorem proving. This book is a source book for students and researchers who want to study both the intuitive first ideas behind the method and the formal details together with many examples.

Principles of Automated Theorem Proving

Principles of Automated Theorem Proving
Author: David A. Duffy
Publisher:
Total Pages: 272
Release: 1991-09-09
Genre: Computers
ISBN:

An overview of ATP techniques for the non-specialist, it discusses all the main approaches to proof: resolution, natural deduction, sequentzen, and the connection calculi. Also discusses strategies for their application and three major implemented systems. Looks in detail at the new field of ``inductionless induction'' and brings out its relationship to the classical approach to proof by induction.

Automated Theorem Proving in Software Engineering

Automated Theorem Proving in Software Engineering
Author: Johann M. Schumann
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2013-06-29
Genre: Computers
ISBN: 3662226464

Growing demands for the quality, safety, and security of software can only be satisfied by the rigorous application of formal methods during software design. This book methodically investigates the potential of first-order logic automated theorem provers for applications in software engineering. Illustrated by complete case studies on protocol verification, verification of security protocols, and logic-based software reuse, this book provides techniques for assessing the prover's capabilities and for selecting and developing an appropriate interface architecture.

First-Order Logic and Automated Theorem Proving

First-Order Logic and Automated Theorem Proving
Author: Melvin Fitting
Publisher: Springer Science & Business Media
Total Pages: 258
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468403575

There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scientists. Although there is a common core to all such books they will be very dif ferent in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer sci ence formal logic turns up in a number of areas, from program verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theorem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issues are not neglected. This does not mean, of course, that the book will be of no interest to philosophers or mathematicians. It does contain a thorough presentation of formal logic and many proof techniques, and as such it contains all the material one would expect to find in a course in formal logic covering completeness but not incompleteness issues. The first item to be addressed is, what are we talking about and why are we interested in it. We are primarily talking about truth as used in mathematical discourse, and our interest in it is, or should be, self-evident. Truth is a semantic concept, so we begin with models and their properties. These are used to define our subject.

Logic for Computer Science

Logic for Computer Science
Author: Jean H. Gallier
Publisher: Courier Dover Publications
Total Pages: 532
Release: 2015-06-18
Genre: Mathematics
ISBN: 0486780821

This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.

Handbook of Practical Logic and Automated Reasoning

Handbook of Practical Logic and Automated Reasoning
Author: John Harrison
Publisher: Cambridge University Press
Total Pages: 703
Release: 2009-03-12
Genre: Computers
ISBN: 0521899575

A one-stop reference, self-contained, with theoretical topics presented in conjunction with implementations for which code is supplied.

Symbolic Logic and Mechanical Theorem Proving

Symbolic Logic and Mechanical Theorem Proving
Author: Chin-Liang Chang
Publisher: Academic Press
Total Pages: 349
Release: 2014-06-28
Genre: Mathematics
ISBN: 0080917283

This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.

Book of Proof

Book of Proof
Author: Richard H. Hammack
Publisher:
Total Pages: 314
Release: 2016-01-01
Genre: Mathematics
ISBN: 9780989472111

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Certified Programming with Dependent Types

Certified Programming with Dependent Types
Author: Adam Chlipala
Publisher: MIT Press
Total Pages: 437
Release: 2013-12-06
Genre: Computers
ISBN: 0262317885

A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.