Particle Therapy Technology for Safe Treatment

Particle Therapy Technology for Safe Treatment
Author: Jay Flanz
Publisher: CRC Press
Total Pages: 492
Release: 2022-01-18
Genre: Science
ISBN: 1000528065

The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case, it is imperative to understand what clinical parameters affect the safety of a treatment and then determine how the technology can affect those parameters. This book provides a practical introduction to particle therapy. It provides a thorough introduction to the technological tools and their applications and then details the components that are needed to implement them. It explains the foundations of beam production and beam delivery that serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation, including how safety and quality are considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals. Particle Therapy Technology for Safe Treatment will be a useful resource for professionals in the field of particle therapy in addition to biomedical engineers and practitioners in the field of beam physics. It can also be used as a textbook for graduate medical physics and beam physics courses. Key Features Presents a practical and accessible journey from application requirements to technical solutions Provides a pedagogic treatment of the underlying technology Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system Author Bio After receiving his PhD in nuclear physics, Dr. Jacob Flanz was the Accelerator Physics Group leader and Principal Research Scientist at the Massachusetts Institute of Technology (MIT), USA, where he designed the recirculator and the GeV stretcher/storage ring. He joined Massachusetts General Hospital (MGH) and Harvard and became project and technical director of proton therapy, with responsibility for specifications, integration, and commissioning ensuring safe clinical performance. He invented the universal nozzle and led the design and implementation of beam scanning at MGH in 2008, including quality assurance. Dr. Flanz has been involved in several FDA applications for particle therapy. He developed and taught the US Particle Accelerator School course "Medical Applications of Accelerators and Beams." He was cochair of education and is currently the president of the Particle Therapy Co-Operative Group. Exercise solutions to accompany this book can be accessed via the 'Instructor Resources' tab on the book webpage.

Principles and Practice of Particle Therapy

Principles and Practice of Particle Therapy
Author: Timothy D. Malouff
Publisher: John Wiley & Sons
Total Pages: 563
Release: 2022-06-13
Genre: Medical
ISBN: 111970751X

Principles and Practice of Particle Therapy Although radiation has been used therapeutically for over 100 years, the field of radiation oncology is currently in the midst of a renaissance, particularly with regards to the therapeutic use of particles. Over the past several years, access to particle therapy, whether it be proton therapy or other heavy ion therapy, has increased dramatically. Principles and Practice of Particle Therapy is a clinically oriented resource that can be referenced by both experienced clinicians and those who are just beginning their venture into particle therapy. Written by a team with significant experience in the field, topics covered include: Background information related to particle therapy, including the clinically relevant physics, radiobiological, and practical aspects of developing a particle therapy program “Niche” treatments, such as FLASH, BNCT, and GRID therapy The simulation process, target volume delineation, and unique treatment planning considerations for each disease site Less commonly used ions, such as fast neutrons or helium Principles and Practice of Particle Therapy is a go-to reference work for any health professional involved in the rapidly evolving field of particle therapy.

Proton Therapy Physics

Proton Therapy Physics
Author: Harald Paganetti
Publisher: CRC Press
Total Pages: 691
Release: 2016-04-19
Genre: Medical
ISBN: 1439836450

Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.

Principles and Practice of Radiation Therapy

Principles and Practice of Radiation Therapy
Author: Charles M. Washington
Publisher: Elsevier Health Sciences
Total Pages: 939
Release: 2015-04-01
Genre: Medical
ISBN: 0323287522

The only radiation therapy text written by radiation therapists, Principles and Practice of Radiation Therapy, 4th Edition helps you understand cancer management and improve clinical techniques for delivering doses of radiation. A problem-based approach makes it easy to apply principles to treatment planning and delivery. New to this edition are updates on current equipment, procedures, and treatment planning. Written by radiation therapy experts Charles Washington and Dennis Leaver, this comprehensive text will be useful throughout your radiation therapy courses and beyond. Comprehensive coverage of radiation therapy includes a clear introduction and overview plus complete information on physics, simulation, and treatment planning. Spotlights and shaded boxes identify the most important concepts. End-of-chapter questions provide a useful review. Chapter objectives, key terms, outlines, and summaries make it easier to prioritize, understand, and retain key information. Key terms are bolded and defined at first mention in the text, and included in the glossary for easy reference. UPDATED chemotherapy section, expansion of What Causes Cancer, and inclusions of additional cancer biology terms and principles provide the essential information needed for clinical success. UPDATED coverage of post-image manipulation techniques includes new material on Cone beam utilization, MR imaging, image guided therapy, and kV imaging. NEW section on radiation safety and misadministration of treatment beams addresses the most up-to-date practice requirements. Content updates also include new ASRT Practice Standards and AHA Patient Care Partnership Standards, keeping you current with practice requirements. UPDATED full-color insert is expanded to 32 pages, and displays images from newer modalities.

Proton Therapy Physics, Second Edition

Proton Therapy Physics, Second Edition
Author: Harald Paganetti
Publisher: CRC Press
Total Pages: 772
Release: 2018-11-19
Genre: Science
ISBN: 1351855751

Expanding on the highly successful first edition, this second edition of Proton Therapy Physics has been completely restructured and updated throughout, and includes several new chapters. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, this book provides an in-depth overview of the physics of this radiation therapy modality, eliminating the need to dig through information scattered across medical physics literature. After tracing the history of proton therapy, the book explores the atomic and nuclear physics background necessary for understanding proton interactions with tissue. The text then covers dosimetry, including beam delivery, shielding aspects, computer simulations, detector systems and measuring techniques for reference dosimetry. Important for daily operations, acceptance testing, commissioning, quality assurance and monitor unit calibrations are outlined. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. Imaging for treatment guidance as well as treatment monitoring is outlined. Finally, the biological implications of using protons from a physics perspective are discussed. This book is an ideal practical guide for physicians, dosimetrists, radiation therapists, and physicists who already have some experience in radiation oncology. It is also an invaluable reference for graduate students in medical physics programs, physicians in their last year of medical school or residency, and those considering a career in medical physics. Features: Updated with the latest technologies and methods in the field, covering all delivery methods of proton therapy, including beam scanning and passive scattering Discusses clinical aspects, such as treatment planning and quality assurance Offers insight on the past, present, and future of proton therapy from a physics perspective

Radiation Oncology: A Physicist's-Eye View

Radiation Oncology: A Physicist's-Eye View
Author: Michael Goitein
Publisher: Springer Science & Business Media
Total Pages: 333
Release: 2007-08-14
Genre: Science
ISBN: 0387726454

The papers collected in this hugely useful volume cover the principle physical and biological aspects of radiation therapy and in addition, address practical clinical considerations in the planning and delivering of that therapy. The importance of the assessment of uncertainties is emphasized. Topics include an overview of the physics of the interactions of radiation with matter and the definition of the goals and the design of radiation therapy approaches.

Stereotactic Body Radiation Therapy

Stereotactic Body Radiation Therapy
Author: Simon S. Lo
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2012-08-28
Genre: Medical
ISBN: 364225604X

Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.

Clinical Radiotherapy Physics

Clinical Radiotherapy Physics
Author: Subramania Jayaraman
Publisher: Springer Science & Business Media
Total Pages: 532
Release: 2011-06-27
Genre: Medical
ISBN: 3642185495

An in-depth introduction to radiotherapy physics emphasizing the clinical aspects of the field. This second edition gradually and sequentially develops each of its topics in clear and concise language. It includes important mathematical analyses, yet is written so that these sections can be skipped, if desired, without compromising understanding. The book consists of seven parts covering basic physics (Parts I-II), equipment for radiotherapy (Part III), radiation dosimetry (Parts IV-V), radiation treatment planning (Part VI), and radiation safety and shielding (Part VII). An invaluable text for radiation oncologists, radiation therapists, and clinical physicists.

Treatment Planning and Dose Calculation in Radiation Oncology

Treatment Planning and Dose Calculation in Radiation Oncology
Author: Gunilla C. Bentel
Publisher: Elsevier
Total Pages: 273
Release: 2014-02-20
Genre: Health & Fitness
ISBN: 1483280411

Treatment Planning and Dose Calculation in Radiation Oncology, Third Edition describes the treatment methods and technical guides as models of contemporary radiation therapy. These models should be modified for each individual patient to yield a best fit to the disease being treated and the radiation sources employed. This book is composed of seven chapters, and begins with an overview of the elements of clinical radiation oncology. The subsequent chapter deals with the production, interaction, and measurement of radiation. These topics are followed by intensive discussions of dose calculation for external beams and pretreatment procedures of radiation therapy. A chapter looks into the principles, apparatus, and dose calculation in brachytherapy. The final chapters describe the principles and practical applications of treatment planning. This book will be of value to radiation oncologists.