Principles And Design Of Aeroplanes
Download Principles And Design Of Aeroplanes full books in PDF, epub, and Kindle. Read online free Principles And Design Of Aeroplanes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Pasquale M. Sforza |
Publisher | : Elsevier |
Total Pages | : 623 |
Release | : 2014-01-31 |
Genre | : Technology & Engineering |
ISBN | : 0124199771 |
Commercial Airplane Design Principles is a succinct, focused text covering all the information required at the preliminary stage of aircraft design: initial sizing and weight estimation, fuselage design, engine selection, aerodynamic analysis, stability and control, drag estimation, performance analysis, and economic analysis. The text places emphasis on making informed choices from an array of competing options, and developing the confidence to do so. - Shows the use of standard, empirical, and classical methods in support of the design process - Explains the preparation of a professional quality design report - Provides a sample outline of a design report - Can be used in conjunction with Sforza, Manned Spacecraft Design Principles to form a complete course in Aircraft/Spacecraft Design
Author | : Mohammad H. Sadraey |
Publisher | : John Wiley & Sons |
Total Pages | : 811 |
Release | : 2012-11-20 |
Genre | : Technology & Engineering |
ISBN | : 1118352807 |
A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects. Key features: • Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts • Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level • Includes fundamental explanations for aeronautical engineering students and practicing engineers • Features a solutions manual to sample questions on the book’s companion website Companion website - www.wiley.com/go/sadraey
Author | : James DeLaurier |
Publisher | : CRC Press |
Total Pages | : 591 |
Release | : 2022-05-16 |
Genre | : Technology & Engineering |
ISBN | : 135185531X |
Aircraft Design Concepts: An Introductory Course introduces the principles of aircraft design through a quantitative approach developed from the author’s extensive experience in teaching aircraft design. Building on prerequisite courses, the text develops basic design skills and methodologies, while also explaining the underlying physics. The book uses a historical approach to examine a wide range of aircraft types and their design. Numerous charts, photos, and illustrations are provided for in-depth view of aeronautical engineering. It addresses conventional tail-aft monoplanes, "flying-wing", biplane, and canard configurations. Providing detailed analysis of propeller performance, the book starts with simple blade-element theory and builds to the Weick method. Written for senior undergraduate and graduate students taking a single-semester course on Aircraft Design or Aircraft Performance, the book imparts both the technical knowledge and creativity needed for aircraft design.
Author | : Daniel P. Raymer |
Publisher | : AIAA (American Institute of Aeronautics & Astronautics) |
Total Pages | : 0 |
Release | : 2006 |
Genre | : Airplanes |
ISBN | : 9781563478291 |
Winner of the Summerfield Book Award Winner of the Aviation-Space Writers Association Award of Excellence. --Over 30,000 copies sold, consistently the top-selling AIAA textbook title This highly regarded textbook presents the entire process of aircraft conceptual designfrom requirements definition to initial sizing, configuration layout, analysis, sizing, and trade studiesin the same manner seen in industry aircraft design groups. Interesting and easy to read, the book has more than 800 pages of design methods, illustrations, tips, explanations, and equations, and extensive appendices with key data essential to design. It is the required design text at numerous universities around the world, and is a favorite of practicing design engineers.
Author | : Norman S. Currey |
Publisher | : AIAA |
Total Pages | : 394 |
Release | : 1988 |
Genre | : Airplanes |
ISBN | : 9781600860188 |
This is the only book available today that covers military and commercial aircraft landing gear design. It is a comprehensive text that will lead students and engineers from the initial concepts of landing gear design through final detail design. The book provides a vital link in landing gear design technology from historical practices to modern design trends, and it considers the necessary airfield interface with landing gear design. The text is backed up by calculations, specifications, references, working examples.
Author | : Robert Kyle Schmidt |
Publisher | : SAE International |
Total Pages | : 1092 |
Release | : 2021-02-18 |
Genre | : Technology & Engineering |
ISBN | : 0768099420 |
The aircraft landing gear and its associated systems represent a compelling design challenge: simultaneously a system, a structure, and a machine, it supports the aircraft on the ground, absorbs landing and braking energy, permits maneuvering, and retracts to minimize aircraft drag. Yet, as it is not required during flight, it also represents dead weight and significant effort must be made to minimize its total mass. The Design of Aircraft Landing Gear, written by R. Kyle Schmidt, PE (B.A.Sc. - Mechanical Engineering, M.Sc. - Safety and Aircraft Accident Investigation, Chairman of the SAE A-5 Committee on Aircraft Landing Gear), is designed to guide the reader through the key principles of landing system design and to provide additional references when available. Many problems which must be confronted have already been addressed by others in the past, but the information is not known or shared, leading to the observation that there are few new problems, but many new people. The Design of Aircraft Landing Gear is intended to share much of the existing information and provide avenues for further exploration. The design of an aircraft and its associated systems, including the landing system, involves iterative loops as the impact of each modification to a system or component is evaluated against the whole. It is rare to find that the lightest possible landing gear represents the best solution for the aircraft: the lightest landing gear may require attachment structures which don't exist and which would require significant weight and compromise on the part of the airframe structure design. With those requirements and compromises in mind,The Design of Aircraft Landing Gear starts with the study of airfield compatibility, aircraft stability on the ground, the correct choice of tires, followed by discussion of brakes, wheels, and brake control systems. Various landing gear architectures are investigated together with the details of shock absorber designs. Retraction, kinematics, and mechanisms are studied as well as possible actuation approaches. Detailed information on the various hydraulic and electric services commonly found on aircraft, and system elements such as dressings, lighting, and steering are also reviewed. Detail design points, the process of analysis, and a review of the relevant requirements and regulations round out the book content. The Design of Aircraft Landing Gear is a landmark work in the industry, and a must-read for any engineer interested in updating specific skills and students preparing for an exciting career.
Author | : Steven A. Brandt |
Publisher | : AIAA |
Total Pages | : 544 |
Release | : 2004 |
Genre | : Aeronautics |
ISBN | : 9781600860720 |
Author | : R. H. Barnard |
Publisher | : Prentice Hall |
Total Pages | : 396 |
Release | : 1995 |
Genre | : Science |
ISBN | : |
This revised and updated edition provides a clear and non-mathematical description of the principles of aerodynamics and mechanics of flight. Taking a qualitative rather than quantitative approach, the text provides material for courses from technician to degree level. The text contains examples of recent innovations, and although it excludes mathematical analysis, the study does provide one or two simple formulae as a means of defining important terms, such as lift coefficient and Reynolds number, which are an essential part of vocabulary of aeronautics. Structural influences are given brief consideration.
Author | : John David Anderson |
Publisher | : McGraw-Hill Science, Engineering & Mathematics |
Total Pages | : 602 |
Release | : 1999 |
Genre | : Technology & Engineering |
ISBN | : |
Balancing technical material with important historical aspects of the invention and design of aeroplanes, this book develops aircraft performance techniques from first principles and applies them to real aeroplanes.
Author | : Thomas R. Yechout |
Publisher | : AIAA |
Total Pages | : 666 |
Release | : 2003 |
Genre | : Aerodynamics |
ISBN | : 9781600860782 |
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.