Earthquake-Induced Landslides

Earthquake-Induced Landslides
Author: Keizo Ugai
Publisher: Springer Science & Business Media
Total Pages: 955
Release: 2012-10-25
Genre: Nature
ISBN: 3642322387

Seismicity is a major trigger for landslides with often devastating effects. The Japan Landslide Society (JLS) therefore organized a meeting fully dedicated to the research area of earthquake induced landslides. The symposium covers all aspects of earthquake-induced landslides including the phenomena occurred in manmade embankments as well as in natural slopes in mountainous areas. In this comprehensive volume on landslide science the JLS presents the Proceedings of this First International Symposium on Earthquake-Induced Landslides, held in November 2012 in Kiryu, Japan.

Probabilistic Analysis and Mapping of Seismically Induced Landslide Deformation in Oregon

Probabilistic Analysis and Mapping of Seismically Induced Landslide Deformation in Oregon
Author: Mahyar Sharifi Mood
Publisher:
Total Pages: 101
Release: 2013
Genre: Earthquake hazard analysis
ISBN:

Landslides are ubiquitous within the state of Oregon, imposing an annual estimated cost of more than $10 million. Weak, saturated soils at steep slopes combined with persistent rainfall throughout most of the year provide a dangerous environment for this natural disaster, particularly in western Oregon. This grim situation is intensified by the presence of the Cascadia Subduction Zone, which is capable of generating large and powerful earthquakes. This thesis presents a fully probabilistic method for regional seismically-induced landslide hazard analysis and mapping, which considers the most current predictions for strong ground motions and seismic sources through deaggregation of the USGS next generation attenuation (NGA) seismic hazard curves in conjunction with topographic, geologic, and other geospatial information. The landslide triggering analysis is integrated into the probability chain and performed using Newmark's sliding block method. In order to estimate strength parameters for each lithological unit, which are difficult to obtain in detail for such a large area, estimated friction angle histograms were derived for each unit based on the terrain slope at locations of previously mapped landslides within the unit. Next, predictive displacement regression models suitable for regional assessment were integrated into the probability chain to calculate the probability of exceedance for specific displacement thresholds (0.1, 0.3, 1.0, 10, 100 m) relevant to engineering and planning purposes. The landslide triggering probability map was validated by previously reported landslides (The Statewide Landslide Inventory Database of Oregon, SLIDO), where more than 99.8% of these landslides fall in "very high" category of hazard level on the landslide triggering map. The created maps are suitable for regional resilience and planning studies by various agencies as well as integration with other hazard maps for risk assessment. The maps can also be used to guide geotechnical investigation, but they should not be used in place of a site-specific analysis.