Runoff Prediction in Ungauged Basins

Runoff Prediction in Ungauged Basins
Author: Günter Blöschl
Publisher: Cambridge University Press
Total Pages: 491
Release: 2013-04-18
Genre: Science
ISBN: 1107067553

Predicting water runoff in ungauged water catchment areas is vital to practical applications such as the design of drainage infrastructure and flooding defences, runoff forecasting, and for catchment management tasks such as water allocation and climate impact analysis. This full colour book offers an impressive synthesis of decades of international research, forming a holistic approach to catchment hydrology and providing a one-stop resource for hydrologists in both developed and developing countries. Topics include data for runoff regionalisation, the prediction of runoff hydrographs, flow duration curves, flow paths and residence times, annual and seasonal runoff, and floods. Illustrated with many case studies and including a final chapter on recommendations for researchers and practitioners, this book is written by expert authors involved in the prestigious IAHS PUB initiative. It is a key resource for academic researchers and professionals in the fields of hydrology, hydrogeology, ecology, geography, soil science, and environmental and civil engineering.

Environmental Modelling

Environmental Modelling
Author: Keith Beven
Publisher: CRC Press
Total Pages: 393
Release: 2018-09-03
Genre: Science
ISBN: 1498717977

Uncertainty in the predictions of science when applied to the environment is an issue of great current relevance in relation to the impacts of climate change, protecting against natural and man-made disasters, pollutant transport and sustainable resource management. However, it is often ignored both by scientists and decision makers, or interpreted as a conflict or disagreement between scientists. This is not necessarily the case, the scientists might well agree, but their predictions would still be uncertain and knowledge of that uncertainty might be important in decision making. Environmental Modelling: An Uncertain Future? introduces students, scientists and decision makers to: the different concepts and techniques of uncertainty estimation in environmental prediction the philosophical background to different concepts of uncertainty the constraint of uncertainties by the collection of observations and data assimilation in real-time forecasting techniques for decision making under uncertainty. This book will be relevant to environmental modellers, practitioners and decision makers in hydrology, hydraulics, ecology, meteorology and oceanography, geomorphology, geochemistry, soil science, pollutant transport and climate change. A companion website for the book can be found at www.uncertain-future.org.uk

Flood Risk Assessment and Management

Flood Risk Assessment and Management
Author: Andreas H. Schumann
Publisher: Springer Science & Business Media
Total Pages: 281
Release: 2011-01-04
Genre: Science
ISBN: 9048199174

Flood catastrophes which happened world-wide have shown that it is not sufficient to characterize the hazard caused by the natural phenomenon "flood" with the well-known 3M-approach (measuring, mapping and modelling). Due to the recent shift in paradigms from a safety oriented approach to risk based planning it became necessary to consider the harmful impacts of hazards. The planning tasks changed from attempts to minimise hazards towards interventions to reduce exposure or susceptibility and nowadays to enhance the capacities to increase resilience. Scientific interest shifts more and more towards interdisciplinary approaches, which are needed to avoid disaster. This book deals with many aspects of flood risk management in a comprehensive way. As risks depend on hazard and vulnerabilities, not only geophysical tools for flood forecasting and planning are presented, but also socio-economic problems of flood management are discussed. Starting with precipitation and meteorological tools to its forecasting, hydrological models are described in their applications for operational flood forecasts, considering model uncertainties and their interactions with hydraulic and groundwater models. With regard to flood risk planning, regionalization aspects and the options to utilize historic floods are discussed. New hydrological tools for flood risk assessments for dams and reservoirs are presented. Problems and options to quantify socio-economic risks and how to consider them in multi-criteria assessments of flood risk planning are discussed. This book contributes to the contemporary efforts to reduce flood risk at the European scale. Using many real-world examples, it is useful for scientists and practitioners at different levels and with different interests.

Flood Forecasting Using Machine Learning Methods

Flood Forecasting Using Machine Learning Methods
Author: Fi-John Chang
Publisher: MDPI
Total Pages: 376
Release: 2019-02-28
Genre: Technology & Engineering
ISBN: 3038975486

Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.

Fundamentals of Statistical Hydrology

Fundamentals of Statistical Hydrology
Author: Mauro Naghettini
Publisher: Springer
Total Pages: 658
Release: 2016-10-26
Genre: Science
ISBN: 3319435612

This textbook covers the main applications of statistical methods in hydrology. It is written for upper undergraduate and graduate students but can be used as a helpful guide for hydrologists, geographers, meteorologists and engineers. The book is very useful for teaching, as it covers the main topics of the subject and contains many worked out examples and proposed exercises. Starting from simple notions of the essential graphical examination of hydrological data, the book gives a complete account of the role that probability considerations must play during modelling, diagnosis of model fit, prediction and evaluating the uncertainty in model predictions, including the essence of Bayesian application in hydrology and statistical methods under nonstationarity. The book also offers a comprehensive and useful discussion on subjective topics, such as the selection of probability distributions suitable for hydrological variables. On a practical level, it explains MS Excel charting and computing capabilities, demonstrates the use of Winbugs free software to solve Monte Carlo Markov Chain (MCMC) simulations, and gives examples of free R code to solve nonstationary models with nonlinear link functions with climate covariates.

Hydrological Modelling and the Water Cycle

Hydrological Modelling and the Water Cycle
Author: Soroosh Sorooshian
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2008-07-18
Genre: Science
ISBN: 3540778438

This volume is a collection of a selected number of articles based on presentations at the 2005 L’Aquila (Italy) Summer School on the topic of “Hydrologic Modeling and Water Cycle: Coupling of the Atmosphere and Hydrological Models”. The p- mary focus of this volume is on hydrologic modeling and their data requirements, especially precipitation. As the eld of hydrologic modeling is experiencing rapid development and transition to application of distributed models, many challenges including overcoming the requirements of compatible observations of inputs and outputs must be addressed. A number of papers address the recent advances in the State-of-the-art distributed precipitation estimation from satellites. A number of articles address the issues related to the data merging and use of geo-statistical techniques for addressing data limitations at spatial resolutions to capture the h- erogeneity of physical processes. The participants at the School came from diverse backgrounds and the level of - terest and active involvement in the discussions clearly demonstrated the importance the scienti c community places on challenges related to the coupling of atmospheric and hydrologic models. Along with my colleagues Dr. Erika Coppola and Dr. Kuolin Hsu, co-directors of the School, we greatly appreciate the invited lectures and all the participants. The members of the local organizing committee, Drs Barbara Tomassetti; Marco Verdecchia and Guido Visconti were instrumental in the success of the school and their contributions, both scienti cally and organizationally are much appreciated.

Scale Issues in Hydrological Modelling

Scale Issues in Hydrological Modelling
Author: J. D. Kalma
Publisher: John Wiley & Sons
Total Pages: 518
Release: 1995-09-11
Genre: Science
ISBN:

There is a growing need for appropriate models which address the management of land and water resources and ecosystems at large space and time scales. Theories of non-linear hydrological processes must be extrapolated to large-scale, three-dimensional natural systems such as drainage basins, flood plains and wetlands. This book reports on recent progress in research on scale issues in hydrological modelling. It brings together 27 papers from two special issues of the journal Hydrological Processes. The book makes a significant contribution towards developing research strategies for linking model parameterisations across a range of temporal and spatial scales. The papers selected for this book reflect the tremendous advances which have been made in research into scale issues in hydrological modelling during the last ten years.

Earth Observation for Water Resources Management

Earth Observation for Water Resources Management
Author: Luis García
Publisher: World Bank Publications
Total Pages: 267
Release: 2016-04-14
Genre: Nature
ISBN: 1464804761

Water systems are building blocks for poverty alleviation, shared growth, sustainable development, and green growth strategies. They require data from in-situ observation networks. Budgetary and other constraints have taken a toll on their operation and there are many regions in the world where the data are scarce or unreliable. Increasingly, remote sensing satellite-based earth observation is becoming an alternative. This book briefly describes some key global water challenges, perspectives for remote sensing approaches, and their importance for water resources-related activities. It describes eight key types of water resources management variables, a list of sensors that can produce such information, and a description of existing data products with examples. Earth Observation for Water Resources Management provides a series of practical guidelines that can be used by project leaders to decide whether remote sensing may be useful for the problem at hand and suitable data sources to consider if so. The book concludes with a review of the literature on reliability statistics of remote-sensed estimations.

Rainfall-runoff Modelling In Gauged And Ungauged Catchments

Rainfall-runoff Modelling In Gauged And Ungauged Catchments
Author: Thorsten Wagener
Publisher: World Scientific
Total Pages: 333
Release: 2004-09-09
Genre: Science
ISBN: 1783260661

This important monograph is based on the results of a study on the identification of conceptual lumped rainfall-runoff models for gauged and ungauged catchments. The task of model identification remains difficult despite decades of research. A detailed problem analysis and an extensive review form the basis for the development of a Matlab® modelling toolkit consisting of two components: a Rainfall-Runoff Modelling Toolbox (RRMT) and a Monte Carlo Analysis Toolbox (MCAT). These are subsequently applied to study the tasks of model identification and evaluation. A novel dynamic identifiability approach has been developed for the gauged catchment case. The theory underlying the application of rainfall-runoff models for predictions in ungauged catchments is studied, problems are highlighted and promising ways to move forward are investigated. Modelling frameworks for both gauged and ungauged cases are developed. This book presents the first extensive treatment of rainfall-runoff model identification in gauged and ungauged catchments.