Prediction and Analysis for Knowledge Representation and Machine Learning

Prediction and Analysis for Knowledge Representation and Machine Learning
Author: Avadhesh Kumar
Publisher: CRC Press
Total Pages: 216
Release: 2022-01-31
Genre: Computers
ISBN: 100048422X

A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems. Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website. Features: Examines the representational adequacy of needed knowledge representation Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which includes both basic and advanced concepts.

Encyclopedia of Data Science and Machine Learning

Encyclopedia of Data Science and Machine Learning
Author: Wang, John
Publisher: IGI Global
Total Pages: 3296
Release: 2023-01-20
Genre: Computers
ISBN: 1799892212

Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.

Patterns, Predictions, and Actions: Foundations of Machine Learning

Patterns, Predictions, and Actions: Foundations of Machine Learning
Author: Moritz Hardt
Publisher: Princeton University Press
Total Pages: 321
Release: 2022-08-23
Genre: Computers
ISBN: 0691233721

An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

Interpretable Machine Learning

Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
Total Pages: 320
Release: 2020
Genre: Computers
ISBN: 0244768528

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Empirical Asset Pricing

Empirical Asset Pricing
Author: Wayne Ferson
Publisher: MIT Press
Total Pages: 497
Release: 2019-03-12
Genre: Business & Economics
ISBN: 0262039370

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

Data Science and Machine Learning

Data Science and Machine Learning
Author: Dirk P. Kroese
Publisher: CRC Press
Total Pages: 538
Release: 2019-11-20
Genre: Business & Economics
ISBN: 1000730778

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Forthcoming Networks and Sustainability in the AIoT Era

Forthcoming Networks and Sustainability in the AIoT Era
Author: Jawad Rasheed
Publisher: Springer Nature
Total Pages: 468
Release: 2024
Genre: Internet of things
ISBN: 3031628713

This book introduces a groundbreaking approach to enhancing IoT device security, providing a comprehensive overview of its applications and methodologies. Covering a wide array of topics, from crime prediction to cyberbullying detection, from facial recognition to analyzing email spam, it addresses diverse challenges in contemporary society. Aimed at researchers, practitioners, and policymakers, this book equips readers with practical tools to tackle real-world issues using advanced machine learning algorithms. Whether you're a data scientist, law enforcement officer, or urban planner, this book is a valuable resource for implementing predictive models and enhancing public safety measures. It is a comprehensive guide for implementing machine learning solutions across various domains, ensuring optimal performance and reliability. Whether you're delving into IoT security or exploring the potential of AI in urban landscapes, this book provides invaluable insights and tools to navigate the evolving landscape of technology and data science. The book provides a comprehensive overview of the challenges and solutions in contemporary cybersecurity. Through case studies and practical examples, readers gain a deeper understanding of the security concerns surrounding IoT devices and learn how to mitigate risks effectively. The book's interdisciplinary approach caters to a diverse audience, including academics, industry professionals, and government officials, who seek to address the growing cybersecurity threats in IoT environments. Key uses of this book include implementing robust security measures for IoT devices, conducting research on machine learning algorithms for attack detection, and developing policies to enhance cybersecurity in IoT ecosystems. By leveraging advanced machine learning techniques, readers can effectively detect and mitigate cyber threats, ensuring the integrity and reliability of IoT systems. Overall, this book is a valuable resource for anyone involved in designing, implementing, or regulating IoT devices and systems.

MDATA: A New Knowledge Representation Model

MDATA: A New Knowledge Representation Model
Author: Yan Jia
Publisher: Springer Nature
Total Pages: 255
Release: 2021-03-06
Genre: Computers
ISBN: 3030715906

Knowledge representation is an important task in understanding how humans think and learn. Although many representation models or cognitive models have been proposed, such as expert systems or knowledge graphs, they cannot represent procedural knowledge, i.e., dynamic knowledge, in an efficient way. This book introduces a new knowledge representation model called MDATA (Multi-dimensional Data Association and inTelligent Analysis). By modifying the representation of entities and relations in knowledge graphs, dynamic knowledge can be efficiently described with temporal and spatial characteristics. The MDATA model can be regarded as a high-level temporal and spatial knowledge graph model, which has strong capabilities for knowledge representation. This book introduces some key technologies in the MDATA model, such as entity recognition, relation extraction, entity alignment, and knowledge reasoning with spatiotemporal factors. The MDATA model can be applied in many critical applications and this book introduces some typical examples, such as network attack detection, social network analysis, and epidemic assessment. The MDATA model should be of interest to readers from many research fields, such as database, cyberspace security, and social network, as the need for the knowledge representation arises naturally in many practical scenarios.

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges
Author: I. Tiddi
Publisher: IOS Press
Total Pages: 314
Release: 2020-05-06
Genre: Computers
ISBN: 1643680811

The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Algorithms of Education

Algorithms of Education
Author: Kalervo N. Gulson
Publisher: U of Minnesota Press
Total Pages: 196
Release: 2022-05-17
Genre: Education
ISBN: 1452964726

A critique of what lies behind the use of data in contemporary education policy While the science fiction tales of artificial intelligence eclipsing humanity are still very much fantasies, in Algorithms of Education the authors tell real stories of how algorithms and machines are transforming education governance, providing a fascinating discussion and critique of data and its role in education policy. Algorithms of Education explores how, for policy makers, today’s ever-growing amount of data creates the illusion of greater control over the educational futures of students and the work of school leaders and teachers. In fact, the increased datafication of education, the authors argue, offers less and less control, as algorithms and artificial intelligence further abstract the educational experience and distance policy makers from teaching and learning. Focusing on the changing conditions for education policy and governance, Algorithms of Education proposes that schools and governments are increasingly turning to “synthetic governance”—a governance where what is human and machine becomes less clear—as a strategy for optimizing education. Exploring case studies of data infrastructures, facial recognition, and the growing use of data science in education, Algorithms of Education draws on a wide variety of fields—from critical theory and media studies to science and technology studies and education policy studies—mapping the political and methodological directions for engaging with datafication and artificial intelligence in education governance. According to the authors, we must go beyond the debates that separate humans and machines in order to develop new strategies for, and a new politics of, education.